PEFT
Safetensors
qwen2
alignment-handbook
trl
dpo
Generated from Trainer
khongtrunght's picture
End of training
017105e verified
|
raw
history blame
3.78 kB
metadata
base_model: slm-research-vn/Qwen2-7B-Instruct-SPPO-Function-call-v2.1
datasets:
  - slm-research-vn/dpo-format-function-calling-v2
  - >-
    slm-research-vn/dpo-format-glaive-code-assistant-v3-with-mistral-large-slm-iter4
  - argilla/dpo-mix-7k
library_name: peft
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: Qwen2-7B-Instruct-SPPO-Function-call-v2.4
    results: []

Qwen2-7B-Instruct-SPPO-Function-call-v2.4

This model is a fine-tuned version of slm-research-vn/Qwen2-7B-Instruct-SPPO-Function-call-v2.1 on the slm-research-vn/dpo-format-function-calling-v2, the slm-research-vn/dpo-format-glaive-code-assistant-v3-with-mistral-large-slm-iter4 and the argilla/dpo-mix-7k datasets. It achieves the following results on the evaluation set:

  • Loss: 0.4345
  • Rewards/chosen: 1.3033
  • Rewards/rejected: 0.2776
  • Rewards/accuracies: 0.8185
  • Rewards/margins: 1.0258
  • Logps/rejected: -333.5228
  • Logps/chosen: -261.0424
  • Logits/rejected: -0.7224
  • Logits/chosen: -0.7089

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6782 0.1270 100 0.6611 0.1038 0.0272 0.8000 0.0766 -338.5302 -285.0340 -0.7425 -0.7284
0.5811 0.2540 200 0.5409 0.5575 0.1395 0.8370 0.4180 -336.2845 -275.9589 -0.7306 -0.6945
0.5484 0.3811 300 0.4777 0.9393 0.2286 0.8000 0.7107 -334.5019 -268.3231 -0.7283 -0.7031
0.4531 0.5081 400 0.4535 1.1283 0.2592 0.8296 0.8690 -333.8891 -264.5439 -0.7170 -0.6879
0.4577 0.6351 500 0.4415 1.2504 0.2849 0.8148 0.9655 -333.3753 -262.1006 -0.7146 -0.6865
0.4715 0.7621 600 0.4364 1.2963 0.2864 0.8148 1.0099 -333.3469 -261.1842 -0.7175 -0.6913
0.4508 0.8892 700 0.4348 1.2990 0.2819 0.8222 1.0172 -333.4369 -261.1283 -0.7185 -0.6937

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1