videomae-base-cart-activity-v1

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2897
  • Accuracy: 0.9002

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 2544

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5671 0.0625 159 0.6464 0.7371
0.3141 1.0625 318 0.4348 0.8403
0.3008 2.0625 477 0.4203 0.8436
0.3051 3.0625 636 0.3499 0.8735
0.2801 4.0625 795 0.3290 0.8719
0.3035 5.0625 954 0.7646 0.7787
0.3501 6.0625 1113 0.2899 0.9002
0.0959 7.0625 1272 0.2681 0.8968
0.2196 8.0625 1431 0.3333 0.8802
0.2609 9.0625 1590 0.3849 0.8769
0.1546 10.0625 1749 0.3787 0.8852
0.1834 11.0625 1908 0.4571 0.8835
0.2244 12.0625 2067 0.3221 0.8902
0.2318 13.0625 2226 0.4032 0.8819
0.2501 14.0625 2385 0.3339 0.8952
0.086 15.0625 2544 0.3323 0.8935

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
15
Safetensors
Model size
86.2M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for keertika/videomae-base-cart-activity-v1

Finetuned
(441)
this model