Edit model card

LiLT-SER-PT

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1403
  • Precision: 0.6998
  • Recall: 0.7551
  • F1: 0.7264
  • Accuracy: 0.7710

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Accuracy F1 Validation Loss Precision Recall
0.0838 8.47 500 0.7697 0.6542 1.0006 0.6081 0.7078
0.0366 16.95 1000 0.7606 0.6795 1.4063 0.6533 0.7078
0.0173 25.42 1500 0.7848 0.7047 1.4681 0.6752 0.7369
0.0036 33.9 2000 0.7706 0.7003 1.6267 0.6577 0.7487
0.0023 42.37 2500 1.6728 0.6839 0.7172 0.7002 0.7698
0.0001 50.85 3000 1.6210 0.6742 0.7493 0.7098 0.7941
0.0001 59.32 3500 1.6883 0.6962 0.7505 0.7223 0.7929
0.0007 67.8 4000 1.8709 0.6730 0.7590 0.7134 0.7811
0.0003 76.27 4500 1.9387 0.6884 0.7151 0.7015 0.7690
0.0034 84.75 5000 1.8042 0.6927 0.7554 0.7227 0.7787
0.0 93.22 5500 2.0395 0.6954 0.7596 0.7261 0.7527
0.0003 101.69 6000 1.9295 0.6861 0.7511 0.7172 0.7790
0.0001 110.17 6500 1.9690 0.6813 0.7611 0.7190 0.7694
0.0 118.64 7000 1.9217 0.6974 0.7520 0.7237 0.7754
0.0001 127.12 7500 2.0703 0.6885 0.7536 0.7196 0.7694
0.0002 135.59 8000 2.0438 0.6915 0.7635 0.7258 0.7770
0.0 144.07 8500 2.0429 0.6980 0.7599 0.7276 0.7782
0.0 152.54 9000 2.1403 0.6998 0.7551 0.7264 0.7710
0.0 161.02 9500 2.1786 0.6986 0.7578 0.7270 0.7726
0.0 169.49 10000 2.1782 0.6965 0.7560 0.7250 0.7721

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1
Downloads last month
6
Safetensors
Model size
284M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kavg/LiLT-SER-PT

Finetuned
(29)
this model
Finetunes
1 model

Evaluation results