LiLT-SER-JA / README.md
kavg's picture
End of training
b125730 verified
metadata
license: mit
base_model: nielsr/lilt-xlm-roberta-base
tags:
  - generated_from_trainer
datasets:
  - xfun
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: LiLT-SER-JA
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: xfun
          type: xfun
          config: xfun.ja
          split: validation
          args: xfun.ja
        metrics:
          - name: Precision
            type: precision
            value: 0.7244408945686901
          - name: Recall
            type: recall
            value: 0.8754826254826255
          - name: F1
            type: f1
            value: 0.7928321678321678
          - name: Accuracy
            type: accuracy
            value: 0.7835245046923879

LiLT-SER-JA

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3482
  • Precision: 0.7244
  • Recall: 0.8755
  • F1: 0.7928
  • Accuracy: 0.7835

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0726 10.2 500 1.0347 0.6824 0.8359 0.7514 0.7829
0.0015 20.41 1000 1.6415 0.6828 0.8808 0.7692 0.7700
0.0062 30.61 1500 1.7000 0.7063 0.8427 0.7685 0.7828
0.0145 40.82 2000 1.9098 0.6979 0.8885 0.7817 0.7729
0.0014 51.02 2500 1.6868 0.7117 0.8509 0.7751 0.7859
0.0009 61.22 3000 1.8930 0.7087 0.8441 0.7705 0.7782
0.0001 71.43 3500 2.0325 0.7217 0.8736 0.7904 0.7845
0.0006 81.63 4000 1.8854 0.7032 0.8769 0.7805 0.7904
0.0001 91.84 4500 2.2205 0.6977 0.8721 0.7752 0.7577
0.0002 102.04 5000 2.1731 0.7090 0.8702 0.7814 0.7786
0.0 112.24 5500 2.3198 0.7150 0.8707 0.7852 0.7681
0.0003 122.45 6000 1.9680 0.7188 0.8649 0.7851 0.7896
0.0 132.65 6500 2.2202 0.7316 0.8523 0.7873 0.7815
0.0 142.86 7000 2.2800 0.7013 0.8818 0.7813 0.7727
0.0 153.06 7500 2.2149 0.7202 0.8784 0.7915 0.7790
0.0 163.27 8000 2.2384 0.7264 0.8663 0.7902 0.7834
0.0001 173.47 8500 2.2177 0.7269 0.8682 0.7913 0.7842
0.0 183.67 9000 2.2768 0.7333 0.8731 0.7971 0.7872
0.0 193.88 9500 2.2996 0.7344 0.8716 0.7972 0.7878
0.0 204.08 10000 2.3482 0.7244 0.8755 0.7928 0.7835

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1