LiLT-RE-PT / README.md
kavg's picture
LiLT-RE-PT
0fb289e verified
metadata
license: mit
base_model: nielsr/lilt-xlm-roberta-base
tags:
  - generated_from_trainer
datasets:
  - xfun
metrics:
  - precision
  - recall
  - f1
model-index:
  - name: checkpoints
    results: []

checkpoints

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:

  • Precision: 0.2199
  • Recall: 0.5308
  • F1: 0.3109
  • Loss: 0.1355

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 10000

Training results

Training Loss Epoch Step Precision Recall F1 Validation Loss
0.1811 16.67 500 0 0 0 0.2498
0.1861 33.33 1000 0.4207 0.0457 0.0825 0.2486
0.0373 50.0 1500 0.4845 0.0517 0.0934 0.2116
0.0856 66.67 2000 0.3184 0.1504 0.2043 0.1696
0.0867 83.33 2500 0.2201 0.3472 0.2694 0.1691
0.0832 100.0 3000 0.2369 0.3685 0.2884 0.1687
0.0756 116.67 3500 0.2152 0.4301 0.2869 0.1561
0.0454 133.33 4000 0.2075 0.4818 0.2900 0.1513
0.0629 150.0 4500 0.2202 0.5282 0.3108 0.1748
0.0503 166.67 5000 0.2058 0.5573 0.3006 0.1832
0.05 183.33 5500 0.2263 0.5381 0.3186 0.1863
0.0365 200.0 6000 0.2233 0.5712 0.3211 0.1524
0.0366 216.67 6500 0.2219 0.5699 0.3195 0.1254
0.0352 233.33 7000 0.2199 0.5308 0.3109 0.1355
0.0524 250.0 7500 0.2184 0.5500 0.3126 0.1456
0.0375 266.67 8000 0.2158 0.5401 0.3084 0.1549
0.0324 283.33 8500 0.2068 0.5507 0.3007 0.1840
0.0168 300.0 9000 0.2155 0.5520 0.3100 0.1686
0.0306 316.67 9500 0.2160 0.5666 0.3128 0.1558
0.0229 333.33 10000 0.2152 0.5712 0.3126 0.1633

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1