checkpoints
This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on the xfun dataset. It achieves the following results on the evaluation set:
- Precision: 0.4372
- Recall: 0.6574
- F1: 0.5252
- Loss: 0.0001
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 10000
Training results
Training Loss | Epoch | Step | F1 | Validation Loss | Precision | Recall |
---|---|---|---|---|---|---|
0.1954 | 20.0 | 500 | 0 | 0.4094 | 0 | 0 |
0.1588 | 40.0 | 1000 | 0.1420 | 0.3055 | 0.3587 | 0.0886 |
0.1182 | 60.0 | 1500 | 0.4253 | 0.1384 | 0.3810 | 0.4812 |
0.0477 | 80.0 | 2000 | 0.4764 | 0.0216 | 0.3949 | 0.6002 |
0.069 | 100.0 | 2500 | 0.5198 | 0.0115 | 0.4564 | 0.6038 |
0.0355 | 120.0 | 3000 | 0.5161 | 0.0018 | 0.4271 | 0.6521 |
0.0268 | 140.0 | 3500 | 0.5254 | 0.0016 | 0.4395 | 0.6530 |
0.0123 | 160.0 | 4000 | 0.5264 | 0.0015 | 0.4382 | 0.6592 |
0.0039 | 180.0 | 4500 | 0.5353 | 0.0011 | 0.4510 | 0.6583 |
0.0139 | 200.0 | 5000 | 0.5390 | 0.0011 | 0.4533 | 0.6646 |
0.001 | 220.0 | 5500 | 0.5430 | 0.0042 | 0.4620 | 0.6583 |
0.01 | 240.0 | 6000 | 0.5347 | 0.0013 | 0.4531 | 0.6521 |
0.0065 | 260.0 | 6500 | 0.5404 | 0.0001 | 0.4540 | 0.6673 |
0.0046 | 280.0 | 7000 | 0.5252 | 0.0001 | 0.4372 | 0.6574 |
0.002 | 300.0 | 7500 | 0.5365 | 0.0007 | 0.4474 | 0.6699 |
0.0002 | 320.0 | 8000 | 0.5393 | 0.0002 | 0.4546 | 0.6628 |
0.0008 | 340.0 | 8500 | 0.5412 | 0.0002 | 0.4569 | 0.6637 |
0.0024 | 360.0 | 9000 | 0.4677 | 0.6601 | 0.5475 | 0.0002 |
0.0001 | 380.0 | 9500 | 0.4560 | 0.6673 | 0.5418 | 0.0002 |
0.002 | 400.0 | 10000 | 0.4594 | 0.6628 | 0.5427 | 0.0003 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
- Downloads last month
- 1