ast-finetuned-gtzan

This model is a fine-tuned version of MIT/ast-finetuned-audioset-10-10-0.4593 on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3848
  • Accuracy: 0.87

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8911 1.0 113 1.7770 0.52
0.9154 2.0 226 0.8861 0.77
0.5408 3.0 339 0.5815 0.83
0.3854 4.0 452 0.5075 0.86
0.4656 5.0 565 0.4716 0.87
0.3679 6.0 678 0.4578 0.87
0.3263 7.0 791 0.4368 0.87
0.4072 8.0 904 0.4078 0.88
0.2734 9.0 1017 0.3847 0.88
0.3517 10.0 1130 0.4185 0.88
0.3147 11.0 1243 0.3946 0.86
0.2572 12.0 1356 0.3899 0.88
0.3696 13.0 1469 0.3843 0.87
0.256 14.0 1582 0.3872 0.87
0.3737 15.0 1695 0.3914 0.88
0.1702 16.0 1808 0.3863 0.87
0.2974 17.0 1921 0.3857 0.87
0.1916 18.0 2034 0.3855 0.87
0.223 19.0 2147 0.3848 0.87
0.1942 20.0 2260 0.3848 0.87

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
3
Safetensors
Model size
86.2M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kalash-1106/ast_classifier

Finetuned
(100)
this model

Dataset used to train kalash-1106/ast_classifier

Evaluation results