wav2vec2-large-xlsr-53-Total2e-4_4
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.2474
- Wer: 0.1951
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
5.5015 | 0.1 | 200 | 2.9261 | 0.9707 |
2.9197 | 0.2 | 400 | 2.7757 | 0.9707 |
1.7594 | 0.3 | 600 | 0.6117 | 0.5746 |
1.0908 | 0.4 | 800 | 0.4673 | 0.4530 |
0.9441 | 0.5 | 1000 | 0.4142 | 0.4010 |
0.8688 | 0.6 | 1200 | 0.3909 | 0.3675 |
0.849 | 0.7 | 1400 | 0.3649 | 0.3360 |
0.8223 | 0.8 | 1600 | 0.3532 | 0.3334 |
0.821 | 0.9 | 1800 | 0.3513 | 0.3185 |
0.7839 | 1.0 | 2000 | 0.3373 | 0.3039 |
0.714 | 1.1 | 2200 | 0.3210 | 0.2922 |
0.7129 | 1.2 | 2400 | 0.3216 | 0.2860 |
0.7076 | 1.3 | 2600 | 0.3279 | 0.2843 |
0.73 | 1.4 | 2800 | 0.3111 | 0.2662 |
0.7256 | 1.5 | 3000 | 0.3032 | 0.2625 |
0.72 | 1.6 | 3200 | 0.3066 | 0.2571 |
0.6754 | 1.7 | 3400 | 0.2999 | 0.2581 |
0.6859 | 1.8 | 3600 | 0.2935 | 0.2562 |
0.6966 | 1.9 | 3800 | 0.2858 | 0.2469 |
0.6791 | 2.0 | 4000 | 0.2857 | 0.2393 |
0.6412 | 2.1 | 4200 | 0.2815 | 0.2392 |
0.6356 | 2.2 | 4400 | 0.2836 | 0.2343 |
0.6048 | 2.3 | 4600 | 0.2824 | 0.2422 |
0.6473 | 2.4 | 4800 | 0.2805 | 0.2316 |
0.659 | 2.5 | 5000 | 0.2775 | 0.2262 |
0.6412 | 2.6 | 5200 | 0.2729 | 0.2249 |
0.6167 | 2.7 | 5400 | 0.2719 | 0.2227 |
0.6226 | 2.8 | 5600 | 0.2661 | 0.2193 |
0.6168 | 2.9 | 5800 | 0.2615 | 0.2172 |
0.6145 | 3.0 | 6000 | 0.2608 | 0.2148 |
0.593 | 3.1 | 6200 | 0.2643 | 0.2123 |
0.5919 | 3.2 | 6400 | 0.2617 | 0.2131 |
0.6115 | 3.3 | 6600 | 0.2589 | 0.2114 |
0.5859 | 3.4 | 6800 | 0.2591 | 0.2100 |
0.5919 | 3.5 | 7000 | 0.2564 | 0.2103 |
0.5873 | 3.6 | 7200 | 0.2572 | 0.2074 |
0.561 | 3.7 | 7400 | 0.2561 | 0.2056 |
0.5808 | 3.8 | 7600 | 0.2538 | 0.2062 |
0.5701 | 3.9 | 7800 | 0.2517 | 0.2029 |
0.5722 | 4.0 | 8000 | 0.2523 | 0.2007 |
0.5508 | 4.1 | 8200 | 0.2570 | 0.2023 |
0.5591 | 4.2 | 8400 | 0.2502 | 0.2029 |
0.5697 | 4.3 | 8600 | 0.2478 | 0.1991 |
0.5689 | 4.4 | 8800 | 0.2492 | 0.2021 |
0.5345 | 4.5 | 9000 | 0.2498 | 0.2005 |
0.5726 | 4.6 | 9200 | 0.2492 | 0.1983 |
0.5382 | 4.7 | 9400 | 0.2487 | 0.1974 |
0.5614 | 4.8 | 9600 | 0.2481 | 0.1957 |
0.5568 | 4.9 | 9800 | 0.2477 | 0.1955 |
0.5631 | 5.0 | 10000 | 0.2474 | 0.1951 |
Framework versions
- Transformers 4.15.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.