|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- teknium/OpenHermes-2.5 |
|
tags: |
|
- axolotl |
|
- 01-ai/Yi-1.5-9B-Chat |
|
- finetune |
|
--- |
|
|
|
|
|
# Hermes-2.5-Yi-1.5-9B-Chat |
|
|
|
This model is a fine-tuned version of [01-ai/Yi-1.5-9B-Chat](https://huggingface.co./01-ai/Yi-1.5-9B-Chat) on the [teknium/OpenHermes-2.5](https://huggingface.co./datasets/teknium/OpenHermes-2.5) dataset. |
|
I'm very happy with the results. The model now seems a lot smarter and "aware" in certain situations (first look, so I might change my opinion with more usage). It got quite an big edge on the AGIEval Benchmark for models in it's class. |
|
I plan to extend its context length to 32k with POSE. |
|
|
|
## Model Details |
|
|
|
- **Base Model:** 01-ai/Yi-1.5-9B-Chat |
|
- **chat-template:** chatml |
|
- **Dataset:** teknium/OpenHermes-2.5 |
|
- **Sequence Length:** 8192 tokens |
|
- **Training:** |
|
- **Epochs:** 1 |
|
- **Hardware:** 4 Nodes x 4 NVIDIA A100 40GB GPUs |
|
- **Duration:** 48:32:13 |
|
- **Cluster:** KIT SCC Cluster |
|
|
|
## Benchmark n_shots=0 |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/659c4ecb413a1376bee2f661/0wv3AMaoete7ysT005n89.png) |
|
|
|
| Benchmark | Score | |
|
|-------------------|--------| |
|
| ARC (Challenge) | 52.47% | |
|
| ARC (Easy) | 81.65% | |
|
| BoolQ | 87.22% | |
|
| HellaSwag | 60.52% | |
|
| OpenBookQA | 33.60% | |
|
| PIQA | 81.12% | |
|
| Winogrande | 72.22% | |
|
| AGIEval | 38.46% | |
|
| TruthfulQA | 44.22% | |
|
| MMLU | 59.72% | |
|
| IFEval | 47.96% | |
|
|
|
|
|
For detailed benchmark results, including sub-categories and various metrics, please refer to the [full benchmark table](#full-benchmark-results) at the end of this README. |
|
|
|
## GGUF and Quantizations |
|
|
|
- llama.cpp [b3166](https://github.com/ggerganov/llama.cpp/releases/tag/b3166) |
|
- [juvi21/Hermes-2.5-Yi-1.5-9B-Chat-GGUF](https://huggingface.co./juvi21/Hermes-2.5-Yi-1.5-9B-Chat-GGUF) is availabe in: |
|
- **F16** **Q8_0** **Q6_KQ5_K_M** **Q4_K_M** **Q3_K_M** **Q2_K** |
|
|
|
|
|
|
|
## Usage |
|
|
|
To use this model, you can load it using the Hugging Face Transformers library: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model = AutoModelForCausalLM.from_pretrained("juvi21/Hermes-2.5-Yi-1.5-9B-Chat") |
|
tokenizer = AutoTokenizer.from_pretrained("juvi21/Hermes-2.5-Yi-1.5-9B-Chat") |
|
|
|
# Generate text |
|
input_text = "What is the question to 42?" |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate(**inputs) |
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
print(generated_text) |
|
|
|
``` |
|
|
|
## chatml |
|
``` |
|
<|im_start|>system |
|
{system_prompt}<|im_end|> |
|
<|im_start|>user |
|
Knock Knock, who is there?<|im_end|> |
|
<|im_start|>assistant |
|
Hi there! <|im_end|> |
|
``` |
|
## License |
|
|
|
This model is released under the Apache 2.0 license. |
|
|
|
## Acknowledgements |
|
|
|
Special thanks to: |
|
- Teknium for the great OpenHermes-2.5 dataset |
|
- 01-ai for their great model |
|
- KIT SCC for FLOPS |
|
|
|
## Citation |
|
|
|
If you use this model in your research, consider citing. Although definetly cite NousResearch and 01-ai: |
|
|
|
```bibtex |
|
@misc{ |
|
author = {juvi21}, |
|
title = Hermes-2.5-Yi-1.5-9B-Chat}, |
|
year = {2024}, |
|
} |
|
``` |
|
## full-benchmark-results |
|
|
|
| Tasks |Version|Filter|n-shot| Metric | | Value | |Stderr| |
|
|---------------------------------------|-------|------|-----:|-----------------------|---|------:|---|------| |
|
|agieval |N/A |none | 0|acc |↑ | 0.5381|± |0.0049| |
|
| | |none | 0|acc_norm |↑ | 0.5715|± |0.0056| |
|
| - agieval_aqua_rat | 1|none | 0|acc |↑ | 0.3858|± |0.0306| |
|
| | |none | 0|acc_norm |↑ | 0.3425|± |0.0298| |
|
| - agieval_gaokao_biology | 1|none | 0|acc |↑ | 0.6048|± |0.0338| |
|
| | |none | 0|acc_norm |↑ | 0.6000|± |0.0339| |
|
| - agieval_gaokao_chemistry | 1|none | 0|acc |↑ | 0.4879|± |0.0348| |
|
| | |none | 0|acc_norm |↑ | 0.4106|± |0.0343| |
|
| - agieval_gaokao_chinese | 1|none | 0|acc |↑ | 0.5935|± |0.0314| |
|
| | |none | 0|acc_norm |↑ | 0.5813|± |0.0315| |
|
| - agieval_gaokao_english | 1|none | 0|acc |↑ | 0.8235|± |0.0218| |
|
| | |none | 0|acc_norm |↑ | 0.8431|± |0.0208| |
|
| - agieval_gaokao_geography | 1|none | 0|acc |↑ | 0.7085|± |0.0323| |
|
| | |none | 0|acc_norm |↑ | 0.6985|± |0.0326| |
|
| - agieval_gaokao_history | 1|none | 0|acc |↑ | 0.7830|± |0.0269| |
|
| | |none | 0|acc_norm |↑ | 0.7660|± |0.0277| |
|
| - agieval_gaokao_mathcloze | 1|none | 0|acc |↑ | 0.0508|± |0.0203| |
|
| - agieval_gaokao_mathqa | 1|none | 0|acc |↑ | 0.3761|± |0.0259| |
|
| | |none | 0|acc_norm |↑ | 0.3590|± |0.0256| |
|
| - agieval_gaokao_physics | 1|none | 0|acc |↑ | 0.4950|± |0.0354| |
|
| | |none | 0|acc_norm |↑ | 0.4700|± |0.0354| |
|
| - agieval_jec_qa_ca | 1|none | 0|acc |↑ | 0.6557|± |0.0150| |
|
| | |none | 0|acc_norm |↑ | 0.5926|± |0.0156| |
|
| - agieval_jec_qa_kd | 1|none | 0|acc |↑ | 0.7310|± |0.0140| |
|
| | |none | 0|acc_norm |↑ | 0.6610|± |0.0150| |
|
| - agieval_logiqa_en | 1|none | 0|acc |↑ | 0.5177|± |0.0196| |
|
| | |none | 0|acc_norm |↑ | 0.4839|± |0.0196| |
|
| - agieval_logiqa_zh | 1|none | 0|acc |↑ | 0.4854|± |0.0196| |
|
| | |none | 0|acc_norm |↑ | 0.4501|± |0.0195| |
|
| - agieval_lsat_ar | 1|none | 0|acc |↑ | 0.2913|± |0.0300| |
|
| | |none | 0|acc_norm |↑ | 0.2696|± |0.0293| |
|
| - agieval_lsat_lr | 1|none | 0|acc |↑ | 0.7196|± |0.0199| |
|
| | |none | 0|acc_norm |↑ | 0.6824|± |0.0206| |
|
| - agieval_lsat_rc | 1|none | 0|acc |↑ | 0.7212|± |0.0274| |
|
| | |none | 0|acc_norm |↑ | 0.6989|± |0.0280| |
|
| - agieval_math | 1|none | 0|acc |↑ | 0.0910|± |0.0091| |
|
| - agieval_sat_en | 1|none | 0|acc |↑ | 0.8204|± |0.0268| |
|
| | |none | 0|acc_norm |↑ | 0.8301|± |0.0262| |
|
| - agieval_sat_en_without_passage | 1|none | 0|acc |↑ | 0.5194|± |0.0349| |
|
| | |none | 0|acc_norm |↑ | 0.4806|± |0.0349| |
|
| - agieval_sat_math | 1|none | 0|acc |↑ | 0.5864|± |0.0333| |
|
| | |none | 0|acc_norm |↑ | 0.5409|± |0.0337| |
|
|arc_challenge | 1|none | 0|acc |↑ | 0.5648|± |0.0145| |
|
| | |none | 0|acc_norm |↑ | 0.5879|± |0.0144| |
|
|arc_easy | 1|none | 0|acc |↑ | 0.8241|± |0.0078| |
|
| | |none | 0|acc_norm |↑ | 0.8165|± |0.0079| |
|
|boolq | 2|none | 0|acc |↑ | 0.8624|± |0.0060| |
|
|hellaswag | 1|none | 0|acc |↑ | 0.5901|± |0.0049| |
|
| | |none | 0|acc_norm |↑ | 0.7767|± |0.0042| |
|
|ifeval | 2|none | 0|inst_level_loose_acc |↑ | 0.5156|± |N/A | |
|
| | |none | 0|inst_level_strict_acc |↑ | 0.4748|± |N/A | |
|
| | |none | 0|prompt_level_loose_acc |↑ | 0.3863|± |0.0210| |
|
| | |none | 0|prompt_level_strict_acc|↑ | 0.3309|± |0.0202| |
|
|mmlu |N/A |none | 0|acc |↑ | 0.6942|± |0.0037| |
|
| - abstract_algebra | 0|none | 0|acc |↑ | 0.4900|± |0.0502| |
|
| - anatomy | 0|none | 0|acc |↑ | 0.6815|± |0.0402| |
|
| - astronomy | 0|none | 0|acc |↑ | 0.7895|± |0.0332| |
|
| - business_ethics | 0|none | 0|acc |↑ | 0.7600|± |0.0429| |
|
| - clinical_knowledge | 0|none | 0|acc |↑ | 0.7132|± |0.0278| |
|
| - college_biology | 0|none | 0|acc |↑ | 0.8056|± |0.0331| |
|
| - college_chemistry | 0|none | 0|acc |↑ | 0.5300|± |0.0502| |
|
| - college_computer_science | 0|none | 0|acc |↑ | 0.6500|± |0.0479| |
|
| - college_mathematics | 0|none | 0|acc |↑ | 0.4100|± |0.0494| |
|
| - college_medicine | 0|none | 0|acc |↑ | 0.6763|± |0.0357| |
|
| - college_physics | 0|none | 0|acc |↑ | 0.5000|± |0.0498| |
|
| - computer_security | 0|none | 0|acc |↑ | 0.8200|± |0.0386| |
|
| - conceptual_physics | 0|none | 0|acc |↑ | 0.7489|± |0.0283| |
|
| - econometrics | 0|none | 0|acc |↑ | 0.5877|± |0.0463| |
|
| - electrical_engineering | 0|none | 0|acc |↑ | 0.6759|± |0.0390| |
|
| - elementary_mathematics | 0|none | 0|acc |↑ | 0.6481|± |0.0246| |
|
| - formal_logic | 0|none | 0|acc |↑ | 0.5873|± |0.0440| |
|
| - global_facts | 0|none | 0|acc |↑ | 0.3900|± |0.0490| |
|
| - high_school_biology | 0|none | 0|acc |↑ | 0.8613|± |0.0197| |
|
| - high_school_chemistry | 0|none | 0|acc |↑ | 0.6453|± |0.0337| |
|
| - high_school_computer_science | 0|none | 0|acc |↑ | 0.8300|± |0.0378| |
|
| - high_school_european_history | 0|none | 0|acc |↑ | 0.8182|± |0.0301| |
|
| - high_school_geography | 0|none | 0|acc |↑ | 0.8485|± |0.0255| |
|
| - high_school_government_and_politics| 0|none | 0|acc |↑ | 0.8964|± |0.0220| |
|
| - high_school_macroeconomics | 0|none | 0|acc |↑ | 0.7923|± |0.0206| |
|
| - high_school_mathematics | 0|none | 0|acc |↑ | 0.4407|± |0.0303| |
|
| - high_school_microeconomics | 0|none | 0|acc |↑ | 0.8655|± |0.0222| |
|
| - high_school_physics | 0|none | 0|acc |↑ | 0.5298|± |0.0408| |
|
| - high_school_psychology | 0|none | 0|acc |↑ | 0.8679|± |0.0145| |
|
| - high_school_statistics | 0|none | 0|acc |↑ | 0.6898|± |0.0315| |
|
| - high_school_us_history | 0|none | 0|acc |↑ | 0.8873|± |0.0222| |
|
| - high_school_world_history | 0|none | 0|acc |↑ | 0.8312|± |0.0244| |
|
| - human_aging | 0|none | 0|acc |↑ | 0.7085|± |0.0305| |
|
| - human_sexuality | 0|none | 0|acc |↑ | 0.7557|± |0.0377| |
|
| - humanities |N/A |none | 0|acc |↑ | 0.6323|± |0.0067| |
|
| - international_law | 0|none | 0|acc |↑ | 0.8099|± |0.0358| |
|
| - jurisprudence | 0|none | 0|acc |↑ | 0.7685|± |0.0408| |
|
| - logical_fallacies | 0|none | 0|acc |↑ | 0.7975|± |0.0316| |
|
| - machine_learning | 0|none | 0|acc |↑ | 0.5179|± |0.0474| |
|
| - management | 0|none | 0|acc |↑ | 0.8835|± |0.0318| |
|
| - marketing | 0|none | 0|acc |↑ | 0.9017|± |0.0195| |
|
| - medical_genetics | 0|none | 0|acc |↑ | 0.8000|± |0.0402| |
|
| - miscellaneous | 0|none | 0|acc |↑ | 0.8225|± |0.0137| |
|
| - moral_disputes | 0|none | 0|acc |↑ | 0.7283|± |0.0239| |
|
| - moral_scenarios | 0|none | 0|acc |↑ | 0.4860|± |0.0167| |
|
| - nutrition | 0|none | 0|acc |↑ | 0.7353|± |0.0253| |
|
| - other |N/A |none | 0|acc |↑ | 0.7287|± |0.0077| |
|
| - philosophy | 0|none | 0|acc |↑ | 0.7170|± |0.0256| |
|
| - prehistory | 0|none | 0|acc |↑ | 0.7346|± |0.0246| |
|
| - professional_accounting | 0|none | 0|acc |↑ | 0.5638|± |0.0296| |
|
| - professional_law | 0|none | 0|acc |↑ | 0.5163|± |0.0128| |
|
| - professional_medicine | 0|none | 0|acc |↑ | 0.6875|± |0.0282| |
|
| - professional_psychology | 0|none | 0|acc |↑ | 0.7092|± |0.0184| |
|
| - public_relations | 0|none | 0|acc |↑ | 0.6727|± |0.0449| |
|
| - security_studies | 0|none | 0|acc |↑ | 0.7347|± |0.0283| |
|
| - social_sciences |N/A |none | 0|acc |↑ | 0.7910|± |0.0072| |
|
| - sociology | 0|none | 0|acc |↑ | 0.8060|± |0.0280| |
|
| - stem |N/A |none | 0|acc |↑ | 0.6581|± |0.0081| |
|
| - us_foreign_policy | 0|none | 0|acc |↑ | 0.8900|± |0.0314| |
|
| - virology | 0|none | 0|acc |↑ | 0.5301|± |0.0389| |
|
| - world_religions | 0|none | 0|acc |↑ | 0.8012|± |0.0306| |
|
|openbookqa | 1|none | 0|acc |↑ | 0.3280|± |0.0210| |
|
| | |none | 0|acc_norm |↑ | 0.4360|± |0.0222| |
|
|piqa | 1|none | 0|acc |↑ | 0.7982|± |0.0094| |
|
| | |none | 0|acc_norm |↑ | 0.8074|± |0.0092| |
|
|truthfulqa |N/A |none | 0|acc |↑ | 0.4746|± |0.0116| |
|
| | |none | 0|bleu_acc |↑ | 0.4700|± |0.0175| |
|
| | |none | 0|bleu_diff |↑ | 0.3214|± |0.6045| |
|
| | |none | 0|bleu_max |↑ |22.5895|± |0.7122| |
|
| | |none | 0|rouge1_acc |↑ | 0.4798|± |0.0175| |
|
| | |none | 0|rouge1_diff |↑ | 0.0846|± |0.7161| |
|
| | |none | 0|rouge1_max |↑ |48.7180|± |0.7833| |
|
| | |none | 0|rouge2_acc |↑ | 0.4149|± |0.0172| |
|
| | |none | 0|rouge2_diff |↑ |-0.4656|± |0.8375| |
|
| | |none | 0|rouge2_max |↑ |34.0585|± |0.8974| |
|
| | |none | 0|rougeL_acc |↑ | 0.4651|± |0.0175| |
|
| | |none | 0|rougeL_diff |↑ |-0.2804|± |0.7217| |
|
| | |none | 0|rougeL_max |↑ |45.2232|± |0.7971| |
|
| - truthfulqa_gen | 3|none | 0|bleu_acc |↑ | 0.4700|± |0.0175| |
|
| | |none | 0|bleu_diff |↑ | 0.3214|± |0.6045| |
|
| | |none | 0|bleu_max |↑ |22.5895|± |0.7122| |
|
| | |none | 0|rouge1_acc |↑ | 0.4798|± |0.0175| |
|
| | |none | 0|rouge1_diff |↑ | 0.0846|± |0.7161| |
|
| | |none | 0|rouge1_max |↑ |48.7180|± |0.7833| |
|
| | |none | 0|rouge2_acc |↑ | 0.4149|± |0.0172| |
|
| | |none | 0|rouge2_diff |↑ |-0.4656|± |0.8375| |
|
| | |none | 0|rouge2_max |↑ |34.0585|± |0.8974| |
|
| | |none | 0|rougeL_acc |↑ | 0.4651|± |0.0175| |
|
| | |none | 0|rougeL_diff |↑ |-0.2804|± |0.7217| |
|
| | |none | 0|rougeL_max |↑ |45.2232|± |0.7971| |
|
| - truthfulqa_mc1 | 2|none | 0|acc |↑ | 0.3905|± |0.0171| |
|
| - truthfulqa_mc2 | 2|none | 0|acc |↑ | 0.5587|± |0.0156| |
|
|winogrande | 1|none | 0|acc |↑ | 0.7388|± |0.0123| |
|
|
|
| Groups |Version|Filter|n-shot| Metric | | Value | |Stderr| |
|
|------------------|-------|------|-----:|-----------|---|------:|---|-----:| |
|
|agieval |N/A |none | 0|acc |↑ | 0.5381|± |0.0049| |
|
| | |none | 0|acc_norm |↑ | 0.5715|± |0.0056| |
|
|mmlu |N/A |none | 0|acc |↑ | 0.6942|± |0.0037| |
|
| - humanities |N/A |none | 0|acc |↑ | 0.6323|± |0.0067| |
|
| - other |N/A |none | 0|acc |↑ | 0.7287|± |0.0077| |
|
| - social_sciences|N/A |none | 0|acc |↑ | 0.7910|± |0.0072| |
|
| - stem |N/A |none | 0|acc |↑ | 0.6581|± |0.0081| |
|
|truthfulqa |N/A |none | 0|acc |↑ | 0.4746|± |0.0116| |
|
| | |none | 0|bleu_acc |↑ | 0.4700|± |0.0175| |
|
| | |none | 0|bleu_diff |↑ | 0.3214|± |0.6045| |
|
| | |none | 0|bleu_max |↑ |22.5895|± |0.7122| |
|
| | |none | 0|rouge1_acc |↑ | 0.4798|± |0.0175| |
|
| | |none | 0|rouge1_diff|↑ | 0.0846|± |0.7161| |
|
| | |none | 0|rouge1_max |↑ |48.7180|± |0.7833| |
|
| | |none | 0|rouge2_acc |↑ | 0.4149|± |0.0172| |
|
| | |none | 0|rouge2_diff|↑ |-0.4656|± |0.8375| |
|
| | |none | 0|rouge2_max |↑ |34.0585|± |0.8974| |
|
| | |none | 0|rougeL_acc |↑ | 0.4651|± |0.0175| |
|
| | |none | 0|rougeL_diff|↑ |-0.2804|± |0.7217| |
|
| | |none | 0|rougeL_max |↑ |45.2232|± |0.7971| |