一、 个人在openwebtext数据集上添加rotary-position-embedding,训练得到的electra-small模型
二、 复现结果(dev dataset)
Model |
CoLA |
SST |
MRPC |
STS |
QQP |
MNLI |
QNLI |
RTE |
Avg. |
ELECTRA-Small-OWT(original) |
56.8 |
88.3 |
87.4 |
86.8 |
88.3 |
78.9 |
87.9 |
68.5 |
80.36 |
ELECTRA-RoFormer-Small-OWT (this) |
55.76 |
90.45 |
87.3 |
86.64 |
89.61 |
81.17 |
88.85 |
62.71 |
80.31 |
三、 训练细节
- 数据集 openwebtext
- 训练batch_size 256
- 学习率lr 5e-4
- 最大句子长度max_seqlen 128
- 训练total step 50W
- GPU RTX3090
- 训练时间总共耗费55h
四、wandb日志
五、 使用
import torch
from transformers import ElectraTokenizer,RoFormerForMaskedLM
text = "Beijing is the capital of [MASK]."
tokenizer = ElectraTokenizer.from_pretrained("junnyu/roformer_small_generator")
pt_model = RoFormerForMaskedLM.from_pretrained(
"junnyu/roformer_small_generator")
pt_inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs).logits[0]
pt_outputs_sentence = "pytorch: "
for i, id in enumerate(tokenizer.encode(text)):
if id == tokenizer.mask_token_id:
tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1])
pt_outputs_sentence += "[" + "||".join(tokens) + "]"
else:
pt_outputs_sentence += "".join(
tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True))+" "
print(pt_outputs_sentence)