介绍
tf版本
https://github.com/ZhuiyiTechnology/roformer
pytorch版本+tf2.0版本
https://github.com/JunnYu/RoFormer_pytorch
pytorch使用
import torch
from transformers import RoFormerForMaskedLM, RoFormerTokenizer
text = "今天[MASK]很好,我[MASK]去公园玩。"
tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_small")
pt_model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_small")
pt_inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs).logits[0]
pt_outputs_sentence = "pytorch: "
for i, id in enumerate(tokenizer.encode(text)):
if id == tokenizer.mask_token_id:
tokens = tokenizer.convert_ids_to_tokens(pt_outputs[i].topk(k=5)[1])
pt_outputs_sentence += "[" + "||".join(tokens) + "]"
else:
pt_outputs_sentence += "".join(
tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True))
print(pt_outputs_sentence)
# pytorch: 今天[天气||心情||感觉||环境||下午]很好,我[要||想||就||可以||去]去公园玩。
tensorflow2.0使用
import tensorflow as tf
from transformers import RoFormerTokenizer, TFRoFormerForMaskedLM
text = "今天[MASK]很好,我[MASK]去公园玩。"
tokenizer = RoFormerTokenizer.from_pretrained("junnyu/roformer_chinese_small")
tf_model = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_small")
tf_inputs = tokenizer(text, return_tensors="tf")
tf_outputs = tf_model(**tf_inputs, training=False).logits[0]
tf_outputs_sentence = "tf2.0: "
for i, id in enumerate(tokenizer.encode(text)):
if id == tokenizer.mask_token_id:
tokens = tokenizer.convert_ids_to_tokens(
tf.math.top_k(tf_outputs[i], k=5)[1])
tf_outputs_sentence += "[" + "||".join(tokens) + "]"
else:
tf_outputs_sentence += "".join(
tokenizer.convert_ids_to_tokens([id], skip_special_tokens=True))
print(tf_outputs_sentence)
# tf2.0 今天[天气||心情||感觉||环境||下午]很好,我[要||想||就||可以||去]去公园玩。
引用
Bibtex:
@misc{su2021roformer,
title={RoFormer: Enhanced Transformer with Rotary Position Embedding},
author={Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu},
year={2021},
eprint={2104.09864},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 270
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.