metadata
license: apache-2.0
tags:
- image-classification
- generated_from_trainer
datasets:
- AI-Lab-Makerere/beans
metrics:
- accuracy
widget:
- src: >-
https://huggingface.co./julenalvaro/platzi_vit_model_julenalvaro/resolve/main/healthy.jpeg
example_title: Healthy
- src: >-
https://huggingface.co./julenalvaro/platzi_vit_model_julenalvaro/resolve/main/bean_rust.jpeg
example_title: Bean Rust
model-index:
- name: platzi_vit_model_julenalvaro
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: beans
type: beans
config: default
split: train
args: default
metrics:
- type: accuracy
value: 0.9924812030075187
name: Accuracy
platzi_vit_model_julenalvaro
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the beans dataset. It achieves the following results on the evaluation set:
- Loss: 0.0314
- Accuracy: 0.9925
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.1352 | 3.85 | 500 | 0.0314 | 0.9925 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2