File size: 1,358 Bytes
02c4777 9a553d9 fb538fb 02c4777 37364a7 69da55a 37364a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
---
language: en
datasets:
- wikisql
widget:
- text: "question: get people name with age equal 25 table: id, name, age"
---
There are an upgraded version that support multiple tables and support "<" sign using Flan-T5 as a based model [here](https://huggingface.co./juierror/flan-t5-text2sql-with-schema-v2).
# How to use
```python
from typing import List
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("juierror/text-to-sql-with-table-schema")
model = AutoModelForSeq2SeqLM.from_pretrained("juierror/text-to-sql-with-table-schema")
def prepare_input(question: str, table: List[str]):
table_prefix = "table:"
question_prefix = "question:"
join_table = ",".join(table)
inputs = f"{question_prefix} {question} {table_prefix} {join_table}"
input_ids = tokenizer(inputs, max_length=700, return_tensors="pt").input_ids
return input_ids
def inference(question: str, table: List[str]) -> str:
input_data = prepare_input(question=question, table=table)
input_data = input_data.to(model.device)
outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700)
result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True)
return result
print(inference(question="get people name with age equal 25", table=["id", "name", "age"]))
``` |