There are an upgraded version that support multiple tables and support "<" sign using Flan-T5 as a based model here.

How to use

from typing import List
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("juierror/text-to-sql-with-table-schema")
model = AutoModelForSeq2SeqLM.from_pretrained("juierror/text-to-sql-with-table-schema")

def prepare_input(question: str, table: List[str]):
    table_prefix = "table:"
    question_prefix = "question:"
    join_table = ",".join(table)
    inputs = f"{question_prefix} {question} {table_prefix} {join_table}"
    input_ids = tokenizer(inputs, max_length=700, return_tensors="pt").input_ids
    return input_ids

def inference(question: str, table: List[str]) -> str:
    input_data = prepare_input(question=question, table=table)
    input_data = input_data.to(model.device)
    outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700)
    result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True)
    return result

print(inference(question="get people name with age equal 25", table=["id", "name", "age"]))
Downloads last month
147
Safetensors
Model size
223M params
Tensor type
F32
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train juierror/text-to-sql-with-table-schema

Spaces using juierror/text-to-sql-with-table-schema 5