judithrosell's picture
End of training
8e6aba5 verified
metadata
library_name: transformers
license: mit
base_model: m3rg-iitd/matscibert
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: VF_MatSciBERT_ST_1000
    results: []

VF_MatSciBERT_ST_1000

This model is a fine-tuned version of m3rg-iitd/matscibert on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1512
  • Precision: 0.9771
  • Recall: 0.9820
  • F1: 0.9795
  • Accuracy: 0.9743

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1768 1.0 517 0.1073 0.9722 0.9763 0.9742 0.9696
0.0579 2.0 1034 0.1096 0.9733 0.9781 0.9757 0.9696
0.0331 3.0 1551 0.1087 0.9763 0.9800 0.9781 0.9725
0.0205 4.0 2068 0.1311 0.9744 0.9801 0.9772 0.9707
0.0119 5.0 2585 0.1321 0.9765 0.9824 0.9795 0.9737
0.0076 6.0 3102 0.1450 0.9760 0.9809 0.9785 0.9725
0.0043 7.0 3619 0.1511 0.9750 0.9813 0.9782 0.9719
0.003 8.0 4136 0.1480 0.9769 0.9811 0.9790 0.9740
0.0021 9.0 4653 0.1494 0.9773 0.9824 0.9798 0.9747
0.0018 10.0 5170 0.1512 0.9771 0.9820 0.9795 0.9743

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1