BERT_BIOMAT_NER1800 / README.md
judithrosell's picture
End of training
3087101 verified
metadata
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: BERT_BIOMAT_NER1800
    results: []

BERT_BIOMAT_NER1800

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1528
  • Precision: 0.8240
  • Recall: 0.8614
  • F1: 0.8422
  • Accuracy: 0.9741

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.257 1.0 869 0.0952 0.7898 0.8157 0.8025 0.9694
0.0707 2.0 1738 0.1023 0.8197 0.8494 0.8343 0.9729
0.0412 3.0 2607 0.1078 0.8234 0.8569 0.8398 0.9739
0.0263 4.0 3476 0.1201 0.8178 0.8675 0.8419 0.9732
0.0143 5.0 4345 0.1208 0.8317 0.8572 0.8443 0.9748
0.0094 6.0 5214 0.1353 0.8212 0.8566 0.8385 0.9736
0.0059 7.0 6083 0.1476 0.8128 0.8644 0.8378 0.9732
0.0047 8.0 6952 0.1474 0.8208 0.8630 0.8414 0.9741
0.0032 9.0 7821 0.1572 0.8129 0.8550 0.8334 0.9728
0.0024 10.0 8690 0.1528 0.8240 0.8614 0.8422 0.9741

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1