bpmn-information-extraction

This model is a fine-tuned version of bert-base-cased on a dataset containing 90 textual process descriptions.

The dataset contains 5 target labels:

  • AGENT
  • TASK
  • TASK_INFO
  • PROCESS_INFO
  • CONDITION

It achieves the following results on the evaluation set:

  • Loss: 0.2909
  • Precision: 0.8557
  • Recall: 0.9247
  • F1: 0.8889
  • Accuracy: 0.9285

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
2.0586 1.0 10 1.5601 0.1278 0.1559 0.1404 0.4750
1.3702 2.0 20 1.0113 0.3947 0.5645 0.4646 0.7150
0.8872 3.0 30 0.6645 0.5224 0.6882 0.5940 0.8051
0.5341 4.0 40 0.4741 0.6754 0.8280 0.7440 0.8541
0.3221 5.0 50 0.3831 0.7523 0.8817 0.8119 0.8883
0.2168 6.0 60 0.3297 0.7731 0.8978 0.8308 0.9079
0.1565 7.0 70 0.2998 0.8195 0.9032 0.8593 0.9128
0.1227 8.0 80 0.3227 0.8038 0.9032 0.8506 0.9099
0.0957 9.0 90 0.2840 0.8431 0.9247 0.8821 0.9216
0.077 10.0 100 0.2914 0.8252 0.9140 0.8673 0.9216
0.0691 11.0 110 0.2850 0.8431 0.9247 0.8821 0.9285
0.059 12.0 120 0.2886 0.8564 0.9301 0.8918 0.9285
0.0528 13.0 130 0.2838 0.8564 0.9301 0.8918 0.9305
0.0488 14.0 140 0.2881 0.8515 0.9247 0.8866 0.9305
0.049 15.0 150 0.2909 0.8557 0.9247 0.8889 0.9285

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
32
Safetensors
Model size
108M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jtlicardo/bpmn-information-extraction

Finetuned
(2035)
this model