whisper-medium-da / README.md
jstoone's picture
Librarian Bot: Add base_model information to model (#1)
7d5c52b
|
raw
history blame
2.52 kB
metadata
language:
  - da
license: apache-2.0
tags:
  - generated_from_trainer
  - hf-asr-leaderboard
  - whisper-event
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: openai/whisper-medium
model-index:
  - name: Whisper Medium Danish (CV11 + FLEAURS)
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: da
          split: test
        metrics:
          - type: wer
            value: 13.708574434508153
            name: Wer

Whisper Medium Danish (CV11 + FLEAURS)

This model is a fine-tuned version of openai/whisper-medium on the mozilla-foundation/common_voice_11_0,google/fleurs da,da_dk dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5814
  • Wer: 13.7086

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-06
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0265 3.14 1000 0.3690 14.7607
0.0063 6.29 2000 0.4342 14.0926
0.0016 9.43 3000 0.4847 14.3609
0.002 12.58 4000 0.4919 14.1715
0.0013 15.72 5000 0.5114 14.2294
0.0014 18.87 6000 0.5197 13.9137
0.0003 22.01 7000 0.5422 14.1978
0.0001 25.16 8000 0.5659 13.8716
0.0001 28.3 9000 0.5772 13.7296
0.0001 31.45 10000 0.5814 13.7086

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.1+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2