Built with Axolotl

See axolotl config

axolotl version: 0.6.0

adapter: lora
base_model: Qwen/Qwen2.5-1.5B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 3e3ae45b403b972d_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/3e3ae45b403b972d_train_data.json
  type:
    field_input: statements
    field_instruction: quiz
    field_output: solution_text
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 16
gradient_checkpointing: false
group_by_length: true
hub_model_id: jssky/c8a6ce8b-1fbb-4d90-99dd-468d170dcfb2
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 1500
micro_batch_size: 2
mlflow_experiment_name: /tmp/3e3ae45b403b972d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 571d5396-597d-4a1b-9a85-72ccf27551e9
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 571d5396-597d-4a1b-9a85-72ccf27551e9
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

c8a6ce8b-1fbb-4d90-99dd-468d170dcfb2

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0472

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 1093

Training results

Training Loss Epoch Step Validation Loss
0.0847 0.2507 274 0.0778
0.0357 0.5014 548 0.0559
0.0574 0.7521 822 0.0472

Framework versions

  • PEFT 0.14.0
  • Transformers 4.46.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
11
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for jssky/c8a6ce8b-1fbb-4d90-99dd-468d170dcfb2

Base model

Qwen/Qwen2.5-1.5B
Adapter
(368)
this model