See axolotl config
axolotl version: 0.4.0
base_model: NousResearch/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: datasets-jsonl/smut-bts-responses-881.jsonl
ds_type: json
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
lora-out
This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.9196
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8373 | 0.02 | 1 | 1.8334 |
1.738 | 0.26 | 17 | 1.7546 |
1.704 | 0.51 | 34 | 1.7389 |
1.6762 | 0.77 | 51 | 1.7410 |
1.5981 | 1.02 | 68 | 1.7487 |
1.5593 | 1.26 | 85 | 1.7956 |
1.4415 | 1.51 | 102 | 1.7860 |
1.6098 | 1.77 | 119 | 1.8020 |
1.5458 | 2.02 | 136 | 1.8526 |
1.4358 | 2.26 | 153 | 1.8557 |
1.4608 | 2.51 | 170 | 1.8844 |
1.4465 | 2.77 | 187 | 1.8980 |
1.3986 | 3.02 | 204 | 1.8998 |
1.5333 | 3.26 | 221 | 1.9195 |
1.3554 | 3.51 | 238 | 1.9184 |
1.3287 | 3.77 | 255 | 1.9196 |
Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.17.0
- Tokenizers 0.15.0
- Downloads last month
- 3
Model tree for jspr/bts-7b-881
Base model
NousResearch/Llama-2-7b-hf