whisper-large-v3-salt-plus-xog-myx-kin-swa-continued
This model is a fine-tuned version of jq/whisper-large-v3-salt-plus-xog-myx-kin-swa on the generator dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.4453
- eval_model_preparation_time: 0.0155
- eval_WER_eng: 0.018
- eval_WER_lug: 0.142
- eval_WER_ach: 0.195
- eval_WER_lgg: 0.189
- eval_WER_teo: 0.202
- eval_WER_nyn: 0.234
- eval_WER_myx: 0.461
- eval_WER_xog: 0.453
- eval_WER_swa: 0.069
- eval_WER_kin: 0.111
- eval_WER_mean: 0.207
- eval_CER_eng: 0.009
- eval_CER_lug: 0.029
- eval_CER_ach: 0.045
- eval_CER_lgg: 0.045
- eval_CER_teo: 0.051
- eval_CER_nyn: 0.043
- eval_CER_myx: 0.092
- eval_CER_xog: 0.081
- eval_CER_swa: 0.015
- eval_CER_kin: 0.031
- eval_CER_mean: 0.044
- eval_runtime: 738.1416
- eval_samples_per_second: 1.165
- eval_steps_per_second: 0.073
- step: 0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 3000
- training_steps: 30000
- mixed_precision_training: Native AMP
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 19
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.