whisper-large-v3-salt-plus-xog-myx-kin-swa-continued

This model is a fine-tuned version of jq/whisper-large-v3-salt-plus-xog-myx-kin-swa on the generator dataset. It achieves the following results on the evaluation set:

  • eval_loss: 0.4453
  • eval_model_preparation_time: 0.0155
  • eval_WER_eng: 0.018
  • eval_WER_lug: 0.142
  • eval_WER_ach: 0.195
  • eval_WER_lgg: 0.189
  • eval_WER_teo: 0.202
  • eval_WER_nyn: 0.234
  • eval_WER_myx: 0.461
  • eval_WER_xog: 0.453
  • eval_WER_swa: 0.069
  • eval_WER_kin: 0.111
  • eval_WER_mean: 0.207
  • eval_CER_eng: 0.009
  • eval_CER_lug: 0.029
  • eval_CER_ach: 0.045
  • eval_CER_lgg: 0.045
  • eval_CER_teo: 0.051
  • eval_CER_nyn: 0.043
  • eval_CER_myx: 0.092
  • eval_CER_xog: 0.081
  • eval_CER_swa: 0.015
  • eval_CER_kin: 0.031
  • eval_CER_mean: 0.044
  • eval_runtime: 738.1416
  • eval_samples_per_second: 1.165
  • eval_steps_per_second: 0.073
  • step: 0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 3000
  • training_steps: 30000
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
19
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for jq/whisper-large-v3-salt-plus-xog-myx-kin-swa-continued

Finetuned
(1)
this model