See axolotl config
axolotl version: 0.6.0
# This works!
base_model: meta-llama/Llama-3.1-405B-Instruct
hub_model_id: jplhughes2/1a_meta-llama-Llama-3.1-405B-Instruct-fsdp-lr1e-5
load_in_8bit: false
load_in_4bit: true
adapter: qlora
wandb_name: 1a_meta-llama-Llama-3.1-405B-Instruct-fsdp-lr1e-5
output_dir: ./outputs/out/1a_meta-llama-Llama-3.1-405B-Instruct-fsdp-lr1e-5
# base_model:
# hub_model_id:
# load_in_8bit:
# load_in_4bit:
# adapter:
# wandb_name:
# output_dir:
tokenizer_type: AutoTokenizer
push_dataset_to_hub:
strict: false
datasets:
- path: jplhughes2/docs_only_30k_filtered
type: completion
field: text
split: train
dataset_prepared_path: last_run_prepared
# val_set_size: 0.05
test_datasets:
- path: jplhughes2/docs_only_val_5k_filtered
type: completion
field: text
split: train
save_safetensors: true
sequence_len: 1024
sample_packing: true
pad_to_sequence_len: true
lora_r: 64
lora_alpha: 128
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
wandb_mode:
wandb_project: alignment-faking
wandb_entity: academicsnyuperez
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 1
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 3
saves_per_epoch: 1
weight_decay: 0.01
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: false
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
pad_token: <|finetune_right_pad_id|>
1a_meta-llama-Llama-3.1-405B-Instruct-fsdp-lr1e-5
This model is a fine-tuned version of meta-llama/Llama-3.1-405B-Instruct on the jplhughes2/docs_only_30k_filtered dataset. It achieves the following results on the evaluation set:
- Loss: 0.6041
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.323 | 0.0016 | 1 | 1.3262 |
0.648 | 0.3344 | 204 | 0.6514 |
0.6137 | 0.6689 | 408 | 0.6041 |
Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.4.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for jplhughes2/1a_meta-llama-Llama-3.1-405B-Instruct-fsdp-lr1e-5
Base model
meta-llama/Llama-3.1-405B
Finetuned
meta-llama/Llama-3.1-405B-Instruct