You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

Valorant Players Detector

Supported Labels

['Body', 'Head']

ALL my models YOLOv10 & YOLOv9

How to use

from ultralytics import YOLO

# Load a pretrained YOLO model
model = YOLO(r'weights\yolov10b_vlr.pt')

# Run inference on 'image.png' with arguments
model.predict(
    'image.png',
    save=True,
    device=0
    )

Confusion matrix normalized

confusion_matrix_normalized.png

Labels

labels.jpg

Results

results.png

Predict

train_batch34921.jpg val_batch0_pred.jpg

YOLOv10b summary (fused): 383 layers, 20,414,236 parameters, 0 gradients, 97.9 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 36/36 [00:06<00:00,  5.30it/s]
                   all        999       2016      0.959      0.886      0.925      0.631
                  Body        966       1029      0.969      0.914      0.955       0.76
                  Head        936        987      0.948      0.857      0.896      0.503

Others models Counter Strike 2 YOLOv10m Object Detection

https://huggingface.co./jparedesDS/cs2-yolov10m

Downloads last month
0
Inference Examples
Inference API (serverless) does not yet support yolov10 models for this pipeline type.

Model tree for jparedesDS/valorant-yolov10b

Unable to build the model tree, the base model loops to the model itself. Learn more.

Collection including jparedesDS/valorant-yolov10b