metadata
base_model: google/pegasus-cnn_dailymail
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: amtibot_pegasus
results: []
library_name: peft
amtibot_pegasus
This model is a fine-tuned version of google/pegasus-cnn_dailymail on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.7407
- Rouge1: 0.4605
- Rouge2: 0.2395
- Rougel: 0.3705
- Rougelsum: 0.3708
- Gen Len: 38.2468
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.02
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
No log | 0.9351 | 9 | 2.0456 | 0.4419 | 0.2278 | 0.3636 | 0.3641 | 37.7013 |
No log | 1.9740 | 19 | 1.8250 | 0.4601 | 0.2424 | 0.3764 | 0.3765 | 38.2597 |
No log | 2.9091 | 28 | 1.7724 | 0.4638 | 0.2365 | 0.3724 | 0.372 | 36.5195 |
No log | 3.7403 | 36 | 1.7407 | 0.4605 | 0.2395 | 0.3705 | 0.3708 | 38.2468 |
Framework versions
- PEFT 0.4.0
- Transformers 4.40.1
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.19.1