|
--- |
|
license: mit |
|
base_model: facebook/bart-large-cnn |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: amtibot_bart |
|
results: [] |
|
library_name: peft |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# amtibot_bart |
|
|
|
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co./facebook/bart-large-cnn) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5905 |
|
- Rouge1: 0.4051 |
|
- Rouge2: 0.195 |
|
- Rougel: 0.3054 |
|
- Rougelsum: 0.3053 |
|
- Gen Len: 65.7532 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.02 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| No log | 0.9351 | 9 | 1.6594 | 0.4057 | 0.1833 | 0.3052 | 0.3048 | 67.9481 | |
|
| 2.11 | 1.9740 | 19 | 1.6149 | 0.3938 | 0.192 | 0.3063 | 0.3058 | 64.8571 | |
|
| 1.554 | 2.9091 | 28 | 1.5842 | 0.3956 | 0.1872 | 0.3039 | 0.3033 | 65.8182 | |
|
| 1.3821 | 3.7403 | 36 | 1.5905 | 0.4051 | 0.195 | 0.3054 | 0.3053 | 65.7532 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.4.0 |
|
- Transformers 4.40.1 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.19.1 |
|
|