joshuaphua's picture
End of training
8bc2710 verified
|
raw
history blame
2.14 kB
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-uncased-conll2003
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: test
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.8926710663424801
          - name: Recall
            type: recall
            value: 0.910056657223796
          - name: F1
            type: f1
            value: 0.9012800280554094
          - name: Accuracy
            type: accuracy
            value: 0.9784860557768924

bert-base-uncased-conll2003

This model is a fine-tuned version of bert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1448
  • Precision: 0.8927
  • Recall: 0.9101
  • F1: 0.9013
  • Accuracy: 0.9785

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.062 1.0 3922 0.1196 0.8913 0.9014 0.8963 0.9784
0.024 2.0 7844 0.1448 0.8927 0.9101 0.9013 0.9785

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.2.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1