metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:200
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
Verbalized number or word (e.g. “lowest”, “low”, “medium”, “high”,
“highest”), such as "Confidence: 60% / Medium".
Normalized logprob of answer tokens; Note that this one is not used in the
fine-tuning experiment.
Logprob of an indirect "True/False" token after the raw answer.
Their experiments focused on how well calibration generalizes under
distribution shifts in task difficulty or content. Each fine-tuning
datapoint is a question, the model’s answer (possibly incorrect), and a
calibrated confidence. Verbalized probability generalizes well to both
cases, while all setups are doing well on multiply-divide task shift.
Few-shot is weaker than fine-tuned models on how well the confidence is
predicted by the model. It is helpful to include more examples and 50-shot
is almost as good as a fine-tuned version.
sentences:
- >-
What is the relationship between the calibration of AI models and the
effectiveness of verbalized probabilities when applied to tasks of
varying difficulty levels?
- >-
In what ways does the F1 @ K metric contribute to evaluating the factual
accuracy and comprehensiveness of outputs generated by long-form
language models?
- >-
What impact does the implementation of a pretrained query-document
relevance model have on the process of document selection in research
methodologies?
- source_sentence: >-
Fig. 4. Overview of SAFE for factuality evaluation of long-form LLM
generation. (Image source: Wei et al. 2024)
The SAFE evaluation metric is F1 @ K. The motivation is that model
response for long-form factuality should ideally hit both precision and
recall, as the response should be both
factual : measured by precision, the percentage of supported facts among
all facts in the entire response.
long : measured by recall, the percentage of provided facts among all
relevant facts that should appear in the response. Therefore we want to
consider the number of supported facts up to $K$.
Given the model response $y$, the metric F1 @ K is defined as:
sentences:
- >-
What methodologies does the agreement model employ to identify
discrepancies between the original and revised text, and how do these
methodologies impact the overall editing workflow?
- >-
In what ways does the SAFE evaluation metric achieve a harmonious
equilibrium between precision and recall in the context of evaluating
the factual accuracy of long-form outputs generated by large language
models?
- >-
In what ways does the inherently adversarial structure of TruthfulQA
inquiries facilitate the detection of prevalent fallacies in human
cognitive processes, and what implications does this have for
understanding the constraints of expansive language models?
- source_sentence: >-
Non-context LLM: Prompt LLM directly with <atomic-fact> True or False?
without additional context.
Retrieval→LLM: Prompt with $k$ related passages retrieved from the
knowledge source as context.
Nonparametric probability (NP)): Compute the average likelihood of tokens
in the atomic fact by a masked LM and use that to make a prediction.
Retrieval→LLM + NP: Ensemble of two methods.
Some interesting observations on model hallucination behavior:
Error rates are higher for rarer entities in the task of biography
generation.
Error rates are higher for facts mentioned later in the generation.
Using retrieval to ground the model generation significantly helps reduce
hallucination.
sentences:
- >-
In what ways does the Rethinking with Retrieval (RR) methodology
leverage Chain-of-Thought (CoT) prompting to enhance the efficacy of
external knowledge retrieval, and what implications does this have for
the precision of predictive outcomes generated by models?
- >-
In what ways does the retrieval of related passages contribute to
minimizing hallucinations in large language models, and what specific
techniques can be employed to evaluate the impact of this approach?
- >-
What are the benefits of using retrieval methods in biography generation
to minimize inaccuracies, especially when compared to traditional
prompting techniques that lack context?
- source_sentence: >-
Yin et al. (2023) studies the concept of self-knowledge, referring to
whether language models know what they know or don’t know.
SelfAware, containing 1,032 unanswerable questions across five categories
and 2,337 answerable questions. Unanswerable questions are sourced from
online forums with human annotations while answerable questions are
sourced from SQuAD, HotpotQA and TriviaQA based on text similarity with
unanswerable questions. A question may be unanswerable due to various
reasons, such as no scientific consensus, imaginations of the future,
completely subjective, philosophical reasons that may yield multiple
responses, etc. Considering separating answerable vs unanswerable
questions as a binary classification task, we can measure F1-score or
accuracy and the experiments showed that larger models can do better at
this task.
sentences:
- >-
What is the relationship between model size and performance metrics,
such as F1-score and accuracy, in the context of classifying questions
into answerable and unanswerable categories?
- >-
How does the introduction of stochastic perturbations in synthetic
training data contribute to the enhancement of editor model efficacy
within LangChain frameworks?
- >-
How do the various output values linked to reflection tokens in the
Self-RAG framework impact the generation process, and why are they
important?
- source_sentence: >-
Fig. 1. Knowledge categorization of close-book QA examples based on how
likely the model outputs correct answers. (Image source: Gekhman et al.
2024)
Some interesting observations of the experiments, where dev set accuracy
is considered a proxy for hallucinations.
Unknown examples are fitted substantially slower than Known.
The best dev performance is obtained when the LLM fits the majority of the
Known training examples but only a few of the Unknown ones. The model
starts to hallucinate when it learns most of the Unknown examples.
Among Known examples, MaybeKnown cases result in better overall
performance, more essential than HighlyKnown ones.
sentences:
- >-
In what ways does the fitting speed of examples that are not previously
encountered differ from that of familiar examples, and how does this
variation influence the overall accuracy of the model on the development
set?
- >-
What role do reflection tokens play in enhancing the efficiency of
document retrieval and generation within the Self-RAG framework?
- >-
How do the results presented by Gekhman et al. in their 2024 study
inform our understanding of the reliability metrics associated with
large language models (LLMs) when subjected to fine-tuning with novel
datasets?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.8802083333333334
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.96875
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.984375
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9947916666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8802083333333334
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3229166666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.196875
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09947916666666667
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8802083333333334
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.96875
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.984375
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9947916666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9433275174124347
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9261284722222224
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9264025950292397
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.8697916666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9739583333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9739583333333334
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9947916666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8697916666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3246527777777778
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1947916666666666
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09947916666666667
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8697916666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9739583333333334
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9739583333333334
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9947916666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.939968526552219
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9216269841269841
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9220610119047619
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.8697916666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9739583333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.984375
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 1
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8697916666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3246527777777778
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.196875
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09999999999999999
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8697916666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9739583333333334
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.984375
name: Cosine Recall@5
- type: cosine_recall@10
value: 1
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9419747509776967
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.922676917989418
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.922676917989418
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.8541666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9583333333333334
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.96875
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9947916666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8541666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3194444444444445
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.19374999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09947916666666667
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8541666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9583333333333334
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.96875
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9947916666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9306358745697197
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9094328703703702
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9098668981481483
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.7916666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.953125
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9739583333333334
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9895833333333334
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7916666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.3177083333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1947916666666666
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09895833333333333
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7916666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.953125
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9739583333333334
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9895833333333334
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9003914274568845
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.8705935846560847
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8713150853775854
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-200")
sentences = [
'Fig. 1. Knowledge categorization of close-book QA examples based on how likely the model outputs correct answers. (Image source: Gekhman et al. 2024)\nSome interesting observations of the experiments, where dev set accuracy is considered a proxy for hallucinations.\n\nUnknown examples are fitted substantially slower than Known.\nThe best dev performance is obtained when the LLM fits the majority of the Known training examples but only a few of the Unknown ones. The model starts to hallucinate when it learns most of the Unknown examples.\nAmong Known examples, MaybeKnown cases result in better overall performance, more essential than HighlyKnown ones.',
'In what ways does the fitting speed of examples that are not previously encountered differ from that of familiar examples, and how does this variation influence the overall accuracy of the model on the development set?',
'How do the results presented by Gekhman et al. in their 2024 study inform our understanding of the reliability metrics associated with large language models (LLMs) when subjected to fine-tuning with novel datasets?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8802 |
cosine_accuracy@3 |
0.9688 |
cosine_accuracy@5 |
0.9844 |
cosine_accuracy@10 |
0.9948 |
cosine_precision@1 |
0.8802 |
cosine_precision@3 |
0.3229 |
cosine_precision@5 |
0.1969 |
cosine_precision@10 |
0.0995 |
cosine_recall@1 |
0.8802 |
cosine_recall@3 |
0.9688 |
cosine_recall@5 |
0.9844 |
cosine_recall@10 |
0.9948 |
cosine_ndcg@10 |
0.9433 |
cosine_mrr@10 |
0.9261 |
cosine_map@100 |
0.9264 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8698 |
cosine_accuracy@3 |
0.974 |
cosine_accuracy@5 |
0.974 |
cosine_accuracy@10 |
0.9948 |
cosine_precision@1 |
0.8698 |
cosine_precision@3 |
0.3247 |
cosine_precision@5 |
0.1948 |
cosine_precision@10 |
0.0995 |
cosine_recall@1 |
0.8698 |
cosine_recall@3 |
0.974 |
cosine_recall@5 |
0.974 |
cosine_recall@10 |
0.9948 |
cosine_ndcg@10 |
0.94 |
cosine_mrr@10 |
0.9216 |
cosine_map@100 |
0.9221 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8698 |
cosine_accuracy@3 |
0.974 |
cosine_accuracy@5 |
0.9844 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.8698 |
cosine_precision@3 |
0.3247 |
cosine_precision@5 |
0.1969 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.8698 |
cosine_recall@3 |
0.974 |
cosine_recall@5 |
0.9844 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.942 |
cosine_mrr@10 |
0.9227 |
cosine_map@100 |
0.9227 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8542 |
cosine_accuracy@3 |
0.9583 |
cosine_accuracy@5 |
0.9688 |
cosine_accuracy@10 |
0.9948 |
cosine_precision@1 |
0.8542 |
cosine_precision@3 |
0.3194 |
cosine_precision@5 |
0.1937 |
cosine_precision@10 |
0.0995 |
cosine_recall@1 |
0.8542 |
cosine_recall@3 |
0.9583 |
cosine_recall@5 |
0.9688 |
cosine_recall@10 |
0.9948 |
cosine_ndcg@10 |
0.9306 |
cosine_mrr@10 |
0.9094 |
cosine_map@100 |
0.9099 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7917 |
cosine_accuracy@3 |
0.9531 |
cosine_accuracy@5 |
0.974 |
cosine_accuracy@10 |
0.9896 |
cosine_precision@1 |
0.7917 |
cosine_precision@3 |
0.3177 |
cosine_precision@5 |
0.1948 |
cosine_precision@10 |
0.099 |
cosine_recall@1 |
0.7917 |
cosine_recall@3 |
0.9531 |
cosine_recall@5 |
0.974 |
cosine_recall@10 |
0.9896 |
cosine_ndcg@10 |
0.9004 |
cosine_mrr@10 |
0.8706 |
cosine_map@100 |
0.8713 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_eval_batch_size
: 16
learning_rate
: 2e-05
num_train_epochs
: 5
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 8
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.2 |
5 |
5.2225 |
- |
- |
- |
- |
- |
0.4 |
10 |
4.956 |
- |
- |
- |
- |
- |
0.6 |
15 |
3.6388 |
- |
- |
- |
- |
- |
0.8 |
20 |
3.1957 |
- |
- |
- |
- |
- |
1.0 |
25 |
2.6928 |
0.8661 |
0.8770 |
0.8754 |
0.8312 |
0.8871 |
1.2 |
30 |
2.5565 |
- |
- |
- |
- |
- |
1.4 |
35 |
1.5885 |
- |
- |
- |
- |
- |
1.6 |
40 |
2.1406 |
- |
- |
- |
- |
- |
1.8 |
45 |
2.193 |
- |
- |
- |
- |
- |
2.0 |
50 |
1.326 |
0.8944 |
0.9110 |
0.9028 |
0.8615 |
0.9037 |
2.2 |
55 |
2.6832 |
- |
- |
- |
- |
- |
2.4 |
60 |
1.0584 |
- |
- |
- |
- |
- |
2.6 |
65 |
0.8853 |
- |
- |
- |
- |
- |
2.8 |
70 |
1.7129 |
- |
- |
- |
- |
- |
3.0 |
75 |
2.1856 |
0.9106 |
0.9293 |
0.9075 |
0.8778 |
0.9266 |
3.2 |
80 |
1.7658 |
- |
- |
- |
- |
- |
3.4 |
85 |
1.9783 |
- |
- |
- |
- |
- |
3.6 |
90 |
1.9583 |
- |
- |
- |
- |
- |
3.8 |
95 |
1.2396 |
- |
- |
- |
- |
- |
4.0 |
100 |
1.1901 |
0.9073 |
0.9253 |
0.9151 |
0.8750 |
0.9312 |
4.2 |
105 |
2.6547 |
- |
- |
- |
- |
- |
4.4 |
110 |
1.3485 |
- |
- |
- |
- |
- |
4.6 |
115 |
1.0767 |
- |
- |
- |
- |
- |
4.8 |
120 |
0.6663 |
- |
- |
- |
- |
- |
5.0 |
125 |
1.3869 |
0.9099 |
0.9227 |
0.9221 |
0.8713 |
0.9264 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}