BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("joshuapb/fine-tuned-matryoshka-1000")
sentences = [
'(1) Joint: join with step 2, where the few-shot examples are structured as (response, verification questions, verification answers); The drawback is that the original response is in the context, so the model may repeat similar hallucination.\n(2) 2-step: separate the verification planning and execution steps, such as the original response doesn’t impact\n(3) Factored: each verification question is answered separately. Say, if a long-form base generation results in multiple verification questions, we would answer each question one-by-one.\n(4) Factor+revise: adding a “cross-checking” step after factored verification execution, conditioned on both the baseline response and the verification question and answer. It detects inconsistency.\n\n\nFinal output: Generate the final, refined output. The output gets revised at this step if any inconsistency is discovered.',
"In what ways does the 'Factor+revise' method enhance the reliability of responses when compared to the 'Joint' and '2-step' methods used for cross-checking?",
'What obstacles arise when depending on the pre-training dataset in the context of extrinsic hallucination affecting model outputs?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8802 |
cosine_accuracy@3 |
0.9844 |
cosine_accuracy@5 |
0.9948 |
cosine_accuracy@10 |
0.9948 |
cosine_precision@1 |
0.8802 |
cosine_precision@3 |
0.3281 |
cosine_precision@5 |
0.199 |
cosine_precision@10 |
0.0995 |
cosine_recall@1 |
0.8802 |
cosine_recall@3 |
0.9844 |
cosine_recall@5 |
0.9948 |
cosine_recall@10 |
0.9948 |
cosine_ndcg@10 |
0.9495 |
cosine_mrr@10 |
0.9338 |
cosine_map@100 |
0.9342 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8854 |
cosine_accuracy@3 |
0.9844 |
cosine_accuracy@5 |
0.9948 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.8854 |
cosine_precision@3 |
0.3281 |
cosine_precision@5 |
0.199 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.8854 |
cosine_recall@3 |
0.9844 |
cosine_recall@5 |
0.9948 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.9537 |
cosine_mrr@10 |
0.9378 |
cosine_map@100 |
0.9378 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.901 |
cosine_accuracy@3 |
0.9844 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.901 |
cosine_precision@3 |
0.3281 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.901 |
cosine_recall@3 |
0.9844 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.9588 |
cosine_mrr@10 |
0.9446 |
cosine_map@100 |
0.9446 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.9062 |
cosine_accuracy@3 |
0.9844 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.9062 |
cosine_precision@3 |
0.3281 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.9062 |
cosine_recall@3 |
0.9844 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.9609 |
cosine_mrr@10 |
0.9475 |
cosine_map@100 |
0.9475 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.8906 |
cosine_accuracy@3 |
0.9844 |
cosine_accuracy@5 |
1.0 |
cosine_accuracy@10 |
1.0 |
cosine_precision@1 |
0.8906 |
cosine_precision@3 |
0.3281 |
cosine_precision@5 |
0.2 |
cosine_precision@10 |
0.1 |
cosine_recall@1 |
0.8906 |
cosine_recall@3 |
0.9844 |
cosine_recall@5 |
1.0 |
cosine_recall@10 |
1.0 |
cosine_ndcg@10 |
0.9551 |
cosine_mrr@10 |
0.9397 |
cosine_map@100 |
0.9397 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_eval_batch_size
: 16
learning_rate
: 2e-05
num_train_epochs
: 5
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 8
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.04 |
5 |
4.9678 |
- |
- |
- |
- |
- |
0.08 |
10 |
4.6482 |
- |
- |
- |
- |
- |
0.12 |
15 |
5.0735 |
- |
- |
- |
- |
- |
0.16 |
20 |
4.0336 |
- |
- |
- |
- |
- |
0.2 |
25 |
3.7572 |
- |
- |
- |
- |
- |
0.24 |
30 |
4.3054 |
- |
- |
- |
- |
- |
0.28 |
35 |
2.6705 |
- |
- |
- |
- |
- |
0.32 |
40 |
3.1929 |
- |
- |
- |
- |
- |
0.36 |
45 |
3.1139 |
- |
- |
- |
- |
- |
0.4 |
50 |
2.5219 |
- |
- |
- |
- |
- |
0.44 |
55 |
3.1847 |
- |
- |
- |
- |
- |
0.48 |
60 |
2.2306 |
- |
- |
- |
- |
- |
0.52 |
65 |
2.251 |
- |
- |
- |
- |
- |
0.56 |
70 |
2.2432 |
- |
- |
- |
- |
- |
0.6 |
75 |
2.7462 |
- |
- |
- |
- |
- |
0.64 |
80 |
2.9992 |
- |
- |
- |
- |
- |
0.68 |
85 |
2.338 |
- |
- |
- |
- |
- |
0.72 |
90 |
2.0169 |
- |
- |
- |
- |
- |
0.76 |
95 |
1.257 |
- |
- |
- |
- |
- |
0.8 |
100 |
1.5015 |
- |
- |
- |
- |
- |
0.84 |
105 |
1.9198 |
- |
- |
- |
- |
- |
0.88 |
110 |
2.2154 |
- |
- |
- |
- |
- |
0.92 |
115 |
2.4026 |
- |
- |
- |
- |
- |
0.96 |
120 |
1.911 |
- |
- |
- |
- |
- |
1.0 |
125 |
2.079 |
0.9151 |
0.9098 |
0.9220 |
0.8788 |
0.9251 |
1.04 |
130 |
1.4704 |
- |
- |
- |
- |
- |
1.08 |
135 |
0.7323 |
- |
- |
- |
- |
- |
1.12 |
140 |
0.6308 |
- |
- |
- |
- |
- |
1.16 |
145 |
0.4655 |
- |
- |
- |
- |
- |
1.2 |
150 |
1.0186 |
- |
- |
- |
- |
- |
1.24 |
155 |
1.1408 |
- |
- |
- |
- |
- |
1.28 |
160 |
1.965 |
- |
- |
- |
- |
- |
1.32 |
165 |
1.5987 |
- |
- |
- |
- |
- |
1.3600 |
170 |
3.288 |
- |
- |
- |
- |
- |
1.4 |
175 |
1.632 |
- |
- |
- |
- |
- |
1.44 |
180 |
1.0376 |
- |
- |
- |
- |
- |
1.48 |
185 |
0.9466 |
- |
- |
- |
- |
- |
1.52 |
190 |
1.0106 |
- |
- |
- |
- |
- |
1.56 |
195 |
1.4875 |
- |
- |
- |
- |
- |
1.6 |
200 |
1.314 |
- |
- |
- |
- |
- |
1.6400 |
205 |
1.3022 |
- |
- |
- |
- |
- |
1.6800 |
210 |
1.5312 |
- |
- |
- |
- |
- |
1.72 |
215 |
1.7982 |
- |
- |
- |
- |
- |
1.76 |
220 |
1.7962 |
- |
- |
- |
- |
- |
1.8 |
225 |
1.5788 |
- |
- |
- |
- |
- |
1.8400 |
230 |
1.152 |
- |
- |
- |
- |
- |
1.88 |
235 |
2.0556 |
- |
- |
- |
- |
- |
1.92 |
240 |
1.3165 |
- |
- |
- |
- |
- |
1.96 |
245 |
0.6941 |
- |
- |
- |
- |
- |
2.0 |
250 |
1.2239 |
0.9404 |
0.944 |
0.9427 |
0.9327 |
0.9424 |
2.04 |
255 |
1.0423 |
- |
- |
- |
- |
- |
2.08 |
260 |
0.8893 |
- |
- |
- |
- |
- |
2.12 |
265 |
1.2859 |
- |
- |
- |
- |
- |
2.16 |
270 |
1.4505 |
- |
- |
- |
- |
- |
2.2 |
275 |
0.2728 |
- |
- |
- |
- |
- |
2.24 |
280 |
0.6588 |
- |
- |
- |
- |
- |
2.2800 |
285 |
0.8014 |
- |
- |
- |
- |
- |
2.32 |
290 |
0.3053 |
- |
- |
- |
- |
- |
2.36 |
295 |
1.4289 |
- |
- |
- |
- |
- |
2.4 |
300 |
1.1458 |
- |
- |
- |
- |
- |
2.44 |
305 |
0.6987 |
- |
- |
- |
- |
- |
2.48 |
310 |
1.3389 |
- |
- |
- |
- |
- |
2.52 |
315 |
1.2991 |
- |
- |
- |
- |
- |
2.56 |
320 |
1.8088 |
- |
- |
- |
- |
- |
2.6 |
325 |
0.4242 |
- |
- |
- |
- |
- |
2.64 |
330 |
1.5873 |
- |
- |
- |
- |
- |
2.68 |
335 |
1.3873 |
- |
- |
- |
- |
- |
2.7200 |
340 |
1.4297 |
- |
- |
- |
- |
- |
2.76 |
345 |
2.0637 |
- |
- |
- |
- |
- |
2.8 |
350 |
1.1252 |
- |
- |
- |
- |
- |
2.84 |
355 |
0.367 |
- |
- |
- |
- |
- |
2.88 |
360 |
1.7606 |
- |
- |
- |
- |
- |
2.92 |
365 |
1.196 |
- |
- |
- |
- |
- |
2.96 |
370 |
1.8827 |
- |
- |
- |
- |
- |
3.0 |
375 |
0.6822 |
0.9494 |
0.9479 |
0.9336 |
0.9414 |
0.9405 |
3.04 |
380 |
0.4954 |
- |
- |
- |
- |
- |
3.08 |
385 |
0.1717 |
- |
- |
- |
- |
- |
3.12 |
390 |
0.7435 |
- |
- |
- |
- |
- |
3.16 |
395 |
1.4323 |
- |
- |
- |
- |
- |
3.2 |
400 |
1.1207 |
- |
- |
- |
- |
- |
3.24 |
405 |
1.9009 |
- |
- |
- |
- |
- |
3.2800 |
410 |
1.6706 |
- |
- |
- |
- |
- |
3.32 |
415 |
0.8378 |
- |
- |
- |
- |
- |
3.36 |
420 |
1.0911 |
- |
- |
- |
- |
- |
3.4 |
425 |
0.6565 |
- |
- |
- |
- |
- |
3.44 |
430 |
1.0302 |
- |
- |
- |
- |
- |
3.48 |
435 |
0.6425 |
- |
- |
- |
- |
- |
3.52 |
440 |
1.1472 |
- |
- |
- |
- |
- |
3.56 |
445 |
1.996 |
- |
- |
- |
- |
- |
3.6 |
450 |
1.5308 |
- |
- |
- |
- |
- |
3.64 |
455 |
0.7427 |
- |
- |
- |
- |
- |
3.68 |
460 |
1.4596 |
- |
- |
- |
- |
- |
3.7200 |
465 |
1.1984 |
- |
- |
- |
- |
- |
3.76 |
470 |
0.7601 |
- |
- |
- |
- |
- |
3.8 |
475 |
1.3544 |
- |
- |
- |
- |
- |
3.84 |
480 |
1.6655 |
- |
- |
- |
- |
- |
3.88 |
485 |
1.2596 |
- |
- |
- |
- |
- |
3.92 |
490 |
0.9451 |
- |
- |
- |
- |
- |
3.96 |
495 |
0.7079 |
- |
- |
- |
- |
- |
4.0 |
500 |
1.3471 |
0.9453 |
0.9446 |
0.9404 |
0.9371 |
0.9335 |
4.04 |
505 |
0.4583 |
- |
- |
- |
- |
- |
4.08 |
510 |
1.288 |
- |
- |
- |
- |
- |
4.12 |
515 |
1.6946 |
- |
- |
- |
- |
- |
4.16 |
520 |
1.1239 |
- |
- |
- |
- |
- |
4.2 |
525 |
1.1026 |
- |
- |
- |
- |
- |
4.24 |
530 |
1.4121 |
- |
- |
- |
- |
- |
4.28 |
535 |
1.7113 |
- |
- |
- |
- |
- |
4.32 |
540 |
0.8389 |
- |
- |
- |
- |
- |
4.36 |
545 |
0.3117 |
- |
- |
- |
- |
- |
4.4 |
550 |
0.3144 |
- |
- |
- |
- |
- |
4.44 |
555 |
1.4694 |
- |
- |
- |
- |
- |
4.48 |
560 |
1.3233 |
- |
- |
- |
- |
- |
4.52 |
565 |
0.792 |
- |
- |
- |
- |
- |
4.5600 |
570 |
0.4881 |
- |
- |
- |
- |
- |
4.6 |
575 |
0.5097 |
- |
- |
- |
- |
- |
4.64 |
580 |
1.6377 |
- |
- |
- |
- |
- |
4.68 |
585 |
0.7273 |
- |
- |
- |
- |
- |
4.72 |
590 |
1.5464 |
- |
- |
- |
- |
- |
4.76 |
595 |
1.4392 |
- |
- |
- |
- |
- |
4.8 |
600 |
1.4384 |
- |
- |
- |
- |
- |
4.84 |
605 |
0.6375 |
- |
- |
- |
- |
- |
4.88 |
610 |
1.0528 |
- |
- |
- |
- |
- |
4.92 |
615 |
0.0276 |
- |
- |
- |
- |
- |
4.96 |
620 |
0.9604 |
- |
- |
- |
- |
- |
5.0 |
625 |
0.7219 |
0.9475 |
0.9446 |
0.9378 |
0.9397 |
0.9342 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}