jorgeortizfuentes's picture
update model card README.md
b12918b
|
raw
history blame
2.55 kB
metadata
tags:
  - generated_from_trainer
model-index:
  - name: nominal-groups-recognition-bert-base-spanish-wwm-cased
    results: []

nominal-groups-recognition-bert-base-spanish-wwm-cased

This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3568
  • Ng Precision: 0.7280
  • Ng Recall: 0.7767
  • Ng F1: 0.7516
  • Ng Number: 3198
  • Overall Precision: 0.7280
  • Overall Recall: 0.7767
  • Overall F1: 0.7516
  • Overall Accuracy: 0.8992

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 13
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Ng Precision Ng Recall Ng F1 Ng Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.3955 1.0 228 0.2778 0.7129 0.7492 0.7306 3198 0.7129 0.7492 0.7306 0.8924
0.2186 2.0 456 0.2763 0.7318 0.7711 0.7509 3198 0.7318 0.7711 0.7509 0.8990
0.1586 3.0 684 0.2960 0.7274 0.7733 0.7496 3198 0.7274 0.7733 0.7496 0.8992
0.119 4.0 912 0.3330 0.7283 0.7727 0.7498 3198 0.7283 0.7727 0.7498 0.8982
0.0943 5.0 1140 0.3568 0.7280 0.7767 0.7516 3198 0.7280 0.7767 0.7516 0.8992

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3