SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jonny9f/food_embeddings")
# Run inference
sentences = [
'Beef Top Round, lean raw',
'Luncheon Slices, meatless',
'Pasta Sauce, spaghetti/marinara ready-to-serve',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
validation
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9913 |
spearman_cosine | 0.9868 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,200,000 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 4 tokens
- mean: 10.2 tokens
- max: 28 tokens
- min: 4 tokens
- mean: 9.65 tokens
- max: 23 tokens
- min: 0.0
- mean: 0.26
- max: 0.92
- Samples:
sentence_0 sentence_1 label Beef top round roast, boneless lean select cooked
Blueberries, canned wild in heavy syrup drained
0.21440656185150148
Nance, frozen unsweetened
Soymilk, unsweetened
0.3654276132583618
Drops - Lemonade
Pickle relish, sweet
0.30108280181884767
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | validation_spearman_cosine |
---|---|---|---|
0.0133 | 500 | 0.0031 | - |
0.0267 | 1000 | 0.0028 | - |
0.04 | 1500 | 0.0025 | - |
0.0533 | 2000 | 0.0024 | - |
0.0667 | 2500 | 0.0023 | - |
0.08 | 3000 | 0.0022 | - |
0.0933 | 3500 | 0.0021 | - |
0.1067 | 4000 | 0.002 | - |
0.12 | 4500 | 0.002 | - |
0.1333 | 5000 | 0.0019 | - |
0.1467 | 5500 | 0.0018 | - |
0.16 | 6000 | 0.0018 | - |
0.1733 | 6500 | 0.0017 | - |
0.1867 | 7000 | 0.0017 | - |
0.2 | 7500 | 0.0016 | - |
0.2133 | 8000 | 0.0016 | - |
0.2267 | 8500 | 0.0016 | - |
0.24 | 9000 | 0.0015 | - |
0.2533 | 9500 | 0.0015 | - |
0.2667 | 10000 | 0.0015 | - |
0.28 | 10500 | 0.0015 | - |
0.2933 | 11000 | 0.0015 | - |
0.3067 | 11500 | 0.0014 | - |
0.32 | 12000 | 0.0014 | - |
0.3333 | 12500 | 0.0013 | - |
0.3467 | 13000 | 0.0013 | - |
0.36 | 13500 | 0.0013 | - |
0.3733 | 14000 | 0.0013 | - |
0.3867 | 14500 | 0.0012 | - |
0.4 | 15000 | 0.0012 | - |
0.4133 | 15500 | 0.0012 | - |
0.4267 | 16000 | 0.0012 | - |
0.44 | 16500 | 0.0012 | - |
0.4533 | 17000 | 0.0012 | - |
0.4667 | 17500 | 0.0011 | - |
0.48 | 18000 | 0.0011 | - |
0.4933 | 18500 | 0.0011 | - |
0.5067 | 19000 | 0.0011 | - |
0.52 | 19500 | 0.0011 | - |
0.5333 | 20000 | 0.0011 | - |
0.5467 | 20500 | 0.0011 | - |
0.56 | 21000 | 0.001 | - |
0.5733 | 21500 | 0.001 | - |
0.5867 | 22000 | 0.001 | - |
0.6 | 22500 | 0.001 | - |
0.6133 | 23000 | 0.001 | - |
0.6267 | 23500 | 0.001 | - |
0.64 | 24000 | 0.0009 | - |
0.6533 | 24500 | 0.0009 | - |
0.6667 | 25000 | 0.0009 | - |
0.68 | 25500 | 0.0009 | - |
0.6933 | 26000 | 0.0009 | - |
0.7067 | 26500 | 0.0009 | - |
0.72 | 27000 | 0.0009 | - |
0.7333 | 27500 | 0.0009 | - |
0.7467 | 28000 | 0.0009 | - |
0.76 | 28500 | 0.0008 | - |
0.7733 | 29000 | 0.0008 | - |
0.7867 | 29500 | 0.0008 | - |
0.8 | 30000 | 0.0008 | - |
0.8133 | 30500 | 0.0008 | - |
0.8267 | 31000 | 0.0008 | - |
0.84 | 31500 | 0.0008 | - |
0.8533 | 32000 | 0.0008 | - |
0.8667 | 32500 | 0.0008 | - |
0.88 | 33000 | 0.0007 | - |
0.8933 | 33500 | 0.0007 | - |
0.9067 | 34000 | 0.0008 | - |
0.92 | 34500 | 0.0007 | - |
0.9333 | 35000 | 0.0007 | - |
0.9467 | 35500 | 0.0007 | - |
0.96 | 36000 | 0.0007 | - |
0.9733 | 36500 | 0.0007 | - |
0.9867 | 37000 | 0.0007 | - |
1.0 | 37500 | 0.0007 | 0.9799 |
0.0133 | 500 | 0.0009 | - |
0.0267 | 1000 | 0.0011 | - |
0.04 | 1500 | 0.0011 | - |
0.0533 | 2000 | 0.001 | - |
0.0667 | 2500 | 0.001 | - |
0.08 | 3000 | 0.001 | - |
0.0933 | 3500 | 0.001 | - |
0.1067 | 4000 | 0.001 | - |
0.12 | 4500 | 0.001 | - |
0.1333 | 5000 | 0.001 | - |
0.1467 | 5500 | 0.001 | - |
0.16 | 6000 | 0.0009 | - |
0.1733 | 6500 | 0.0009 | - |
0.1867 | 7000 | 0.0009 | - |
0.2 | 7500 | 0.0009 | - |
0.2133 | 8000 | 0.001 | - |
0.2267 | 8500 | 0.0009 | - |
0.24 | 9000 | 0.0009 | - |
0.2533 | 9500 | 0.0009 | - |
0.2667 | 10000 | 0.0008 | - |
0.28 | 10500 | 0.0009 | - |
0.2933 | 11000 | 0.0008 | - |
0.3067 | 11500 | 0.0008 | - |
0.32 | 12000 | 0.0008 | - |
0.3333 | 12500 | 0.0008 | - |
0.3467 | 13000 | 0.0008 | - |
0.36 | 13500 | 0.0008 | - |
0.3733 | 14000 | 0.0008 | - |
0.3867 | 14500 | 0.0008 | - |
0.4 | 15000 | 0.0008 | - |
0.4133 | 15500 | 0.0007 | - |
0.4267 | 16000 | 0.0007 | - |
0.44 | 16500 | 0.0008 | - |
0.4533 | 17000 | 0.0007 | - |
0.4667 | 17500 | 0.0007 | - |
0.48 | 18000 | 0.0007 | - |
0.4933 | 18500 | 0.0007 | - |
0.5067 | 19000 | 0.0007 | - |
0.52 | 19500 | 0.0007 | - |
0.5333 | 20000 | 0.0007 | - |
0.5467 | 20500 | 0.0007 | - |
0.56 | 21000 | 0.0007 | - |
0.5733 | 21500 | 0.0006 | - |
0.5867 | 22000 | 0.0007 | - |
0.6 | 22500 | 0.0006 | - |
0.6133 | 23000 | 0.0006 | - |
0.6267 | 23500 | 0.0006 | - |
0.64 | 24000 | 0.0006 | - |
0.6533 | 24500 | 0.0006 | - |
0.6667 | 25000 | 0.0006 | - |
0.68 | 25500 | 0.0006 | - |
0.6933 | 26000 | 0.0006 | - |
0.7067 | 26500 | 0.0006 | - |
0.72 | 27000 | 0.0006 | - |
0.7333 | 27500 | 0.0006 | - |
0.7467 | 28000 | 0.0006 | - |
0.76 | 28500 | 0.0005 | - |
0.7733 | 29000 | 0.0005 | - |
0.7867 | 29500 | 0.0006 | - |
0.8 | 30000 | 0.0005 | - |
0.8133 | 30500 | 0.0005 | - |
0.8267 | 31000 | 0.0005 | - |
0.84 | 31500 | 0.0005 | - |
0.8533 | 32000 | 0.0005 | - |
0.8667 | 32500 | 0.0005 | - |
0.88 | 33000 | 0.0005 | - |
0.8933 | 33500 | 0.0005 | - |
0.9067 | 34000 | 0.0005 | - |
0.92 | 34500 | 0.0005 | - |
0.9333 | 35000 | 0.0005 | - |
0.9467 | 35500 | 0.0005 | - |
0.96 | 36000 | 0.0005 | - |
0.9733 | 36500 | 0.0005 | - |
0.9867 | 37000 | 0.0005 | - |
1.0 | 37500 | 0.0005 | 0.9850 |
0.0133 | 500 | 0.0004 | - |
0.0267 | 1000 | 0.0005 | - |
0.04 | 1500 | 0.0005 | - |
0.0533 | 2000 | 0.0005 | - |
0.0667 | 2500 | 0.0005 | - |
0.08 | 3000 | 0.0005 | - |
0.0933 | 3500 | 0.0005 | - |
0.1067 | 4000 | 0.0004 | - |
0.12 | 4500 | 0.0004 | - |
0.1333 | 5000 | 0.0004 | - |
0.1467 | 5500 | 0.0004 | - |
0.16 | 6000 | 0.0004 | - |
0.1733 | 6500 | 0.0004 | - |
0.1867 | 7000 | 0.0004 | - |
0.2 | 7500 | 0.0004 | - |
0.2133 | 8000 | 0.0004 | - |
0.2267 | 8500 | 0.0004 | - |
0.24 | 9000 | 0.0004 | - |
0.2533 | 9500 | 0.0004 | - |
0.2667 | 10000 | 0.0004 | - |
0.28 | 10500 | 0.0004 | - |
0.2933 | 11000 | 0.0004 | - |
0.3067 | 11500 | 0.0004 | - |
0.32 | 12000 | 0.0004 | - |
0.3333 | 12500 | 0.0004 | - |
0.3467 | 13000 | 0.0004 | - |
0.36 | 13500 | 0.0004 | - |
0.3733 | 14000 | 0.0004 | - |
0.3867 | 14500 | 0.0004 | - |
0.4 | 15000 | 0.0004 | - |
0.4133 | 15500 | 0.0004 | - |
0.4267 | 16000 | 0.0004 | - |
0.44 | 16500 | 0.0004 | - |
0.4533 | 17000 | 0.0004 | - |
0.4667 | 17500 | 0.0004 | - |
0.48 | 18000 | 0.0004 | - |
0.4933 | 18500 | 0.0004 | - |
0.5067 | 19000 | 0.0004 | - |
0.52 | 19500 | 0.0004 | - |
0.5333 | 20000 | 0.0004 | - |
0.5467 | 20500 | 0.0004 | - |
0.56 | 21000 | 0.0004 | - |
0.5733 | 21500 | 0.0004 | - |
0.5867 | 22000 | 0.0004 | - |
0.6 | 22500 | 0.0004 | - |
0.6133 | 23000 | 0.0004 | - |
0.6267 | 23500 | 0.0004 | - |
0.64 | 24000 | 0.0004 | - |
0.6533 | 24500 | 0.0004 | - |
0.6667 | 25000 | 0.0004 | - |
0.68 | 25500 | 0.0004 | - |
0.6933 | 26000 | 0.0004 | - |
0.7067 | 26500 | 0.0004 | - |
0.72 | 27000 | 0.0004 | - |
0.7333 | 27500 | 0.0004 | - |
0.7467 | 28000 | 0.0004 | - |
0.76 | 28500 | 0.0004 | - |
0.7733 | 29000 | 0.0004 | - |
0.7867 | 29500 | 0.0004 | - |
0.8 | 30000 | 0.0004 | - |
0.8133 | 30500 | 0.0004 | - |
0.8267 | 31000 | 0.0004 | - |
0.84 | 31500 | 0.0004 | - |
0.8533 | 32000 | 0.0004 | - |
0.8667 | 32500 | 0.0004 | - |
0.88 | 33000 | 0.0004 | - |
0.8933 | 33500 | 0.0004 | - |
0.9067 | 34000 | 0.0004 | - |
0.92 | 34500 | 0.0004 | - |
0.9333 | 35000 | 0.0004 | - |
0.9467 | 35500 | 0.0004 | - |
0.96 | 36000 | 0.0004 | - |
0.9733 | 36500 | 0.0004 | - |
0.9867 | 37000 | 0.0004 | - |
1.0 | 37500 | 0.0004 | 0.9868 |
Framework Versions
- Python: 3.11.3
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 59
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jonny9f/food_embeddings
Base model
sentence-transformers/all-mpnet-base-v2Evaluation results
- Pearson Cosine on validationself-reported0.991
- Spearman Cosine on validationself-reported0.987