File size: 4,579 Bytes
2b4c28f
 
 
 
92cb9d5
 
 
 
 
2b4c28f
92cb9d5
2b4c28f
 
92cb9d5
 
65972ac
 
92cb9d5
 
 
 
 
 
 
 
65972ac
92cb9d5
65972ac
92cb9d5
65972ac
92cb9d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65972ac
92cb9d5
 
 
65972ac
92cb9d5
65972ac
92cb9d5
 
 
65972ac
92cb9d5
 
 
 
65972ac
 
 
 
 
 
92cb9d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65972ac
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
language: en
library_name: transformers
tags:
  - vision
  - image-segmentation
  - nvidia/mit-b5
  - transformers.js
  - onnx
datasets:
  - celebamaskhq
---

# Face Parsing

![example image and output](demo.png)

[Semantic segmentation](https://huggingface.co./docs/transformers/tasks/semantic_segmentation) model fine-tuned from [nvidia/mit-b5](https://huggingface.co./nvidia/mit-b5) with [CelebAMask-HQ](https://github.com/switchablenorms/CelebAMask-HQ) for face parsing. For additional options, see the Transformers [Segformer docs](https://huggingface.co./docs/transformers/model_doc/segformer).

> ONNX model for web inference contributed by [Xenova](https://huggingface.co./Xenova).

## Usage in Python

```python
import torch
from torch import nn
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation

from PIL import Image
import matplotlib.pyplot as plt
import requests

# convenience expression for automatically determining device
device = (
    "cuda"
    # Device for NVIDIA or AMD GPUs
    if torch.cuda.is_available()
    else "mps"
    # Device for Apple Silicon (Metal Performance Shaders)
    if torch.backends.mps.is_available()
    else "cpu"
)

# load models
image_processor = SegformerImageProcessor.from_pretrained("jonathandinu/face-parsing")
model = SegformerForSemanticSegmentation.from_pretrained("jonathandinu/face-parsing")
model.to(device)

# expects a PIL.Image or torch.Tensor
url = "https://images.unsplash.com/photo-1539571696357-5a69c17a67c6"
image = Image.open(requests.get(url, stream=True).raw)

# run inference on image
inputs = image_processor(images=image, return_tensors="pt").to(device)
outputs = model(**inputs)
logits = outputs.logits  # shape (batch_size, num_labels, ~height/4, ~width/4)

# resize output to match input image dimensions
upsampled_logits = nn.functional.interpolate(logits,
                size=image.size[::-1], # H x W
                mode='bilinear',
                align_corners=False)

# get label masks
labels = upsampled_logits.argmax(dim=1)[0]

# move to CPU to visualize in matplotlib
labels_viz = labels.cpu().numpy()
plt.imshow(labels_viz)
plt.show()
```

## Usage in the browser (Transformers.js)

```js
import {
  pipeline,
  env,
} from "https://cdn.jsdelivr.net/npm/@xenova/[email protected]";

// important to prevent errors since the model files are likely remote on HF hub
env.allowLocalModels = false;

// instantiate image segmentation pipeline with pretrained face parsing model
model = await pipeline("image-segmentation", "jonathandinu/face-parsing");

// async inference since it could take a few seconds
const output = await model(url);

// each label is a separate mask object
// [
//   { score: null, label: 'background', mask: transformers.js RawImage { ... }}
//   { score: null, label: 'hair', mask: transformers.js RawImage { ... }}
//    ...
// ]
for (const m of output) {
  print(`Found ${m.label}`);
  m.mask.save(`${m.label}.png`);
}
```

### p5.js

Since [p5.js](https://p5js.org/) uses an animation loop abstraction, we need to take care loading the model and making predictions.

```js
// ...

// asynchronously load transformers.js and instantiate model
async function preload() {
  // load transformers.js library with a dynamic import
  const { pipeline, env } = await import(
    "https://cdn.jsdelivr.net/npm/@xenova/[email protected]"
  );

  // important to prevent errors since the model files are remote on HF hub
  env.allowLocalModels = false;

  // instantiate image segmentation pipeline with pretrained face parsing model
  model = await pipeline("image-segmentation", "jonathandinu/face-parsing");

  print("face-parsing model loaded");
}

// ...
```

[full p5.js example](https://editor.p5js.org/jonathan.ai/sketches/wZn15Dvgh)

### Model Description

- **Developed by:** [Jonathan Dinu](https://twitter.com/jonathandinu)
- **Model type:** Transformer-based semantic segmentation image model
- **License:** non-commercial research and educational purposes
- **Resources for more information:** Transformers docs on [Segformer](https://huggingface.co./docs/transformers/model_doc/segformer) and/or the [original research paper](https://arxiv.org/abs/2105.15203).

## Limitations and Bias

### Bias

While the capabilities of computer vision models are impressive, they can also reinforce or exacerbate social biases. The [CelebAMask-HQ](https://github.com/switchablenorms/CelebAMask-HQ) dataset used for fine-tuning is large but not necessarily perfectly diverse or representative. Also, they are images of.... just celebrities.