jonathandinu
commited on
Upload folder using huggingface_hub
Browse files
README.md
CHANGED
@@ -13,6 +13,8 @@ datasets:
|
|
13 |
|
14 |
# Face Parsing
|
15 |
|
|
|
|
|
16 |
[Semantic segmentation](https://huggingface.co/docs/transformers/tasks/semantic_segmentation) model fine-tuned from [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) with [CelebAMask-HQ](https://github.com/switchablenorms/CelebAMask-HQ) for face parsing. For additional options, see the Transformers [Segformer docs](https://huggingface.co/docs/transformers/model_doc/segformer).
|
17 |
|
18 |
> ONNX model for web inference contributed by [Xenova](https://huggingface.co/Xenova).
|
@@ -21,8 +23,11 @@ datasets:
|
|
21 |
|
22 |
```python
|
23 |
import torch
|
|
|
24 |
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
|
|
|
25 |
from PIL import Image
|
|
|
26 |
import requests
|
27 |
|
28 |
# convenience expression for automatically determining device
|
@@ -42,23 +47,27 @@ model = SegformerForSemanticSegmentation.from_pretrained("jonathandinu/face-pars
|
|
42 |
model.to(device)
|
43 |
|
44 |
# expects a PIL.Image or torch.Tensor
|
45 |
-
url = "
|
46 |
image = Image.open(requests.get(url, stream=True).raw)
|
47 |
-
pixel_values = F.resize(image, (512, 512)).unsqueeze(0)
|
48 |
|
49 |
# run inference on image
|
50 |
-
inputs = image_processor(images=image, return_tensors="pt")
|
51 |
outputs = model(**inputs)
|
52 |
-
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
|
53 |
|
54 |
# resize output to match input image dimensions
|
55 |
upsampled_logits = nn.functional.interpolate(logits,
|
56 |
-
size=image.
|
57 |
mode='bilinear',
|
58 |
align_corners=False)
|
59 |
|
60 |
# get label masks
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
62 |
```
|
63 |
|
64 |
## Usage in the browser (Transformers.js)
|
@@ -111,7 +120,6 @@ async function preload() {
|
|
111 |
model = await pipeline("image-segmentation", "jonathandinu/face-parsing");
|
112 |
|
113 |
print("face-parsing model loaded");
|
114 |
-
loading = false;
|
115 |
}
|
116 |
|
117 |
// ...
|
@@ -130,4 +138,4 @@ async function preload() {
|
|
130 |
|
131 |
### Bias
|
132 |
|
133 |
-
While the capabilities of computer vision models are impressive, they can also reinforce or exacerbate social biases. The [CelebAMask-HQ](https://github.com/switchablenorms/CelebAMask-HQ) dataset used for fine-tuning is large but not necessarily perfectly diverse.
|
|
|
13 |
|
14 |
# Face Parsing
|
15 |
|
16 |
+
![example image and output](demo.png)
|
17 |
+
|
18 |
[Semantic segmentation](https://huggingface.co/docs/transformers/tasks/semantic_segmentation) model fine-tuned from [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) with [CelebAMask-HQ](https://github.com/switchablenorms/CelebAMask-HQ) for face parsing. For additional options, see the Transformers [Segformer docs](https://huggingface.co/docs/transformers/model_doc/segformer).
|
19 |
|
20 |
> ONNX model for web inference contributed by [Xenova](https://huggingface.co/Xenova).
|
|
|
23 |
|
24 |
```python
|
25 |
import torch
|
26 |
+
from torch import nn
|
27 |
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
|
28 |
+
|
29 |
from PIL import Image
|
30 |
+
import matplotlib.pyplot as plt
|
31 |
import requests
|
32 |
|
33 |
# convenience expression for automatically determining device
|
|
|
47 |
model.to(device)
|
48 |
|
49 |
# expects a PIL.Image or torch.Tensor
|
50 |
+
url = "https://images.unsplash.com/photo-1539571696357-5a69c17a67c6"
|
51 |
image = Image.open(requests.get(url, stream=True).raw)
|
|
|
52 |
|
53 |
# run inference on image
|
54 |
+
inputs = image_processor(images=image, return_tensors="pt").to(device)
|
55 |
outputs = model(**inputs)
|
56 |
+
logits = outputs.logits # shape (batch_size, num_labels, ~height/4, ~width/4)
|
57 |
|
58 |
# resize output to match input image dimensions
|
59 |
upsampled_logits = nn.functional.interpolate(logits,
|
60 |
+
size=image.size[::-1], # H x W
|
61 |
mode='bilinear',
|
62 |
align_corners=False)
|
63 |
|
64 |
# get label masks
|
65 |
+
labels = upsampled_logits.argmax(dim=1)[0]
|
66 |
+
|
67 |
+
# move to CPU to visualize in matplotlib
|
68 |
+
labels_viz = labels.cpu().numpy()
|
69 |
+
plt.imshow(labels_viz)
|
70 |
+
plt.show()
|
71 |
```
|
72 |
|
73 |
## Usage in the browser (Transformers.js)
|
|
|
120 |
model = await pipeline("image-segmentation", "jonathandinu/face-parsing");
|
121 |
|
122 |
print("face-parsing model loaded");
|
|
|
123 |
}
|
124 |
|
125 |
// ...
|
|
|
138 |
|
139 |
### Bias
|
140 |
|
141 |
+
While the capabilities of computer vision models are impressive, they can also reinforce or exacerbate social biases. The [CelebAMask-HQ](https://github.com/switchablenorms/CelebAMask-HQ) dataset used for fine-tuning is large but not necessarily perfectly diverse or representative. Also, they are images of.... just celebrities.
|
demo.png
ADDED