Edit model card
Configuration Parsing Warning: In adapter_config.json: "peft.base_model_name_or_path" must be a string

llama-sentiment-classifier

This model is a fine-tuned version of meta-llama/Llama-3.1-8B-instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3453
  • Accuracy: 0.9677
  • F1: 0.9735
  • Precision: 0.9756
  • Recall: 0.9713

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.5412 0.0783 100 0.5607 0.7675 0.7938 0.8627 0.7351
0.3145 0.1566 200 0.3603 0.9530 0.9608 0.975 0.9470
0.3636 0.2349 300 0.3565 0.9543 0.9621 0.9729 0.9514
0.3313 0.3132 400 0.3533 0.9597 0.9666 0.9753 0.9581
0.3633 0.3915 500 0.3516 0.9610 0.9681 0.9649 0.9713
0.3537 0.4699 600 0.3498 0.9624 0.9692 0.9650 0.9735
0.3381 0.5482 700 0.3483 0.9624 0.9691 0.9691 0.9691
0.3141 0.6265 800 0.3497 0.9637 0.9700 0.9754 0.9647
0.3661 0.7048 900 0.3472 0.9664 0.9724 0.9735 0.9713
0.3133 0.7831 1000 0.3476 0.9651 0.9714 0.9692 0.9735
0.3667 0.8614 1100 0.3517 0.9597 0.9666 0.9753 0.9581
0.3383 0.9397 1200 0.3463 0.9664 0.9726 0.9672 0.9779
0.3133 1.0180 1300 0.3455 0.9691 0.9746 0.9736 0.9757
0.3733 1.0963 1400 0.3570 0.9556 0.9630 0.9773 0.9492
0.3382 1.1746 1500 0.3516 0.9610 0.9677 0.9753 0.9603
0.3383 1.2529 1600 0.3464 0.9664 0.9724 0.9714 0.9735
0.3133 1.3312 1700 0.3461 0.9677 0.9736 0.9714 0.9757
0.3407 1.4096 1800 0.3482 0.9651 0.9712 0.9755 0.9669
0.3383 1.4879 1900 0.3560 0.9543 0.9618 0.9794 0.9448
0.3158 1.5662 2000 0.3466 0.9664 0.9723 0.9756 0.9691
0.3411 1.6445 2100 0.3452 0.9677 0.9735 0.9756 0.9713
0.3133 1.7228 2200 0.3451 0.9677 0.9735 0.9756 0.9713
0.3633 1.8011 2300 0.3439 0.9677 0.9735 0.9756 0.9713
0.3133 1.8794 2400 0.3459 0.9664 0.9723 0.9756 0.9691
0.3133 1.9577 2500 0.3463 0.9664 0.9723 0.9756 0.9691
0.3135 2.0360 2600 0.3447 0.9677 0.9735 0.9756 0.9713
0.3133 2.1143 2700 0.3436 0.9691 0.9746 0.9736 0.9757
0.3133 2.1926 2800 0.3461 0.9664 0.9723 0.9756 0.9691
0.3133 2.2709 2900 0.3498 0.9624 0.9689 0.9754 0.9625
0.3383 2.3493 3000 0.3473 0.9651 0.9712 0.9755 0.9669
0.3133 2.4276 3100 0.3461 0.9664 0.9723 0.9756 0.9691
0.3633 2.5059 3200 0.3457 0.9664 0.9723 0.9756 0.9691
0.3133 2.5842 3300 0.3457 0.9664 0.9723 0.9756 0.9691
0.3383 2.6625 3400 0.3451 0.9677 0.9735 0.9756 0.9713
0.3382 2.7408 3500 0.3452 0.9677 0.9735 0.9756 0.9713
0.3133 2.8191 3600 0.3452 0.9677 0.9735 0.9756 0.9713
0.3633 2.8974 3700 0.3454 0.9677 0.9735 0.9756 0.9713
0.3383 2.9757 3800 0.3453 0.9677 0.9735 0.9756 0.9713

Framework versions

  • PEFT 0.13.2
  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .