Configuration Parsing
Warning:
In adapter_config.json: "peft.base_model_name_or_path" must be a string
llama-sentiment-classifier
This model is a fine-tuned version of meta-llama/Llama-3.1-8B-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3453
- Accuracy: 0.9677
- F1: 0.9735
- Precision: 0.9756
- Recall: 0.9713
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.5412 | 0.0783 | 100 | 0.5607 | 0.7675 | 0.7938 | 0.8627 | 0.7351 |
0.3145 | 0.1566 | 200 | 0.3603 | 0.9530 | 0.9608 | 0.975 | 0.9470 |
0.3636 | 0.2349 | 300 | 0.3565 | 0.9543 | 0.9621 | 0.9729 | 0.9514 |
0.3313 | 0.3132 | 400 | 0.3533 | 0.9597 | 0.9666 | 0.9753 | 0.9581 |
0.3633 | 0.3915 | 500 | 0.3516 | 0.9610 | 0.9681 | 0.9649 | 0.9713 |
0.3537 | 0.4699 | 600 | 0.3498 | 0.9624 | 0.9692 | 0.9650 | 0.9735 |
0.3381 | 0.5482 | 700 | 0.3483 | 0.9624 | 0.9691 | 0.9691 | 0.9691 |
0.3141 | 0.6265 | 800 | 0.3497 | 0.9637 | 0.9700 | 0.9754 | 0.9647 |
0.3661 | 0.7048 | 900 | 0.3472 | 0.9664 | 0.9724 | 0.9735 | 0.9713 |
0.3133 | 0.7831 | 1000 | 0.3476 | 0.9651 | 0.9714 | 0.9692 | 0.9735 |
0.3667 | 0.8614 | 1100 | 0.3517 | 0.9597 | 0.9666 | 0.9753 | 0.9581 |
0.3383 | 0.9397 | 1200 | 0.3463 | 0.9664 | 0.9726 | 0.9672 | 0.9779 |
0.3133 | 1.0180 | 1300 | 0.3455 | 0.9691 | 0.9746 | 0.9736 | 0.9757 |
0.3733 | 1.0963 | 1400 | 0.3570 | 0.9556 | 0.9630 | 0.9773 | 0.9492 |
0.3382 | 1.1746 | 1500 | 0.3516 | 0.9610 | 0.9677 | 0.9753 | 0.9603 |
0.3383 | 1.2529 | 1600 | 0.3464 | 0.9664 | 0.9724 | 0.9714 | 0.9735 |
0.3133 | 1.3312 | 1700 | 0.3461 | 0.9677 | 0.9736 | 0.9714 | 0.9757 |
0.3407 | 1.4096 | 1800 | 0.3482 | 0.9651 | 0.9712 | 0.9755 | 0.9669 |
0.3383 | 1.4879 | 1900 | 0.3560 | 0.9543 | 0.9618 | 0.9794 | 0.9448 |
0.3158 | 1.5662 | 2000 | 0.3466 | 0.9664 | 0.9723 | 0.9756 | 0.9691 |
0.3411 | 1.6445 | 2100 | 0.3452 | 0.9677 | 0.9735 | 0.9756 | 0.9713 |
0.3133 | 1.7228 | 2200 | 0.3451 | 0.9677 | 0.9735 | 0.9756 | 0.9713 |
0.3633 | 1.8011 | 2300 | 0.3439 | 0.9677 | 0.9735 | 0.9756 | 0.9713 |
0.3133 | 1.8794 | 2400 | 0.3459 | 0.9664 | 0.9723 | 0.9756 | 0.9691 |
0.3133 | 1.9577 | 2500 | 0.3463 | 0.9664 | 0.9723 | 0.9756 | 0.9691 |
0.3135 | 2.0360 | 2600 | 0.3447 | 0.9677 | 0.9735 | 0.9756 | 0.9713 |
0.3133 | 2.1143 | 2700 | 0.3436 | 0.9691 | 0.9746 | 0.9736 | 0.9757 |
0.3133 | 2.1926 | 2800 | 0.3461 | 0.9664 | 0.9723 | 0.9756 | 0.9691 |
0.3133 | 2.2709 | 2900 | 0.3498 | 0.9624 | 0.9689 | 0.9754 | 0.9625 |
0.3383 | 2.3493 | 3000 | 0.3473 | 0.9651 | 0.9712 | 0.9755 | 0.9669 |
0.3133 | 2.4276 | 3100 | 0.3461 | 0.9664 | 0.9723 | 0.9756 | 0.9691 |
0.3633 | 2.5059 | 3200 | 0.3457 | 0.9664 | 0.9723 | 0.9756 | 0.9691 |
0.3133 | 2.5842 | 3300 | 0.3457 | 0.9664 | 0.9723 | 0.9756 | 0.9691 |
0.3383 | 2.6625 | 3400 | 0.3451 | 0.9677 | 0.9735 | 0.9756 | 0.9713 |
0.3382 | 2.7408 | 3500 | 0.3452 | 0.9677 | 0.9735 | 0.9756 | 0.9713 |
0.3133 | 2.8191 | 3600 | 0.3452 | 0.9677 | 0.9735 | 0.9756 | 0.9713 |
0.3633 | 2.8974 | 3700 | 0.3454 | 0.9677 | 0.9735 | 0.9756 | 0.9713 |
0.3383 | 2.9757 | 3800 | 0.3453 | 0.9677 | 0.9735 | 0.9756 | 0.9713 |
Framework versions
- PEFT 0.13.2
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.2
- Tokenizers 0.19.1
- Downloads last month
- 4