clasificador-ser-estar-window-5-bert-base

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4932
  • F1 Score: 0.8401
  • Recall: 0.9536
  • Precision: 0.7508
  • Roc Auc: 0.8601

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1 Score Recall Precision Roc Auc
No log 1.0 25 0.6813 0.7465 1.0 0.5955 0.5145
No log 2.0 50 0.6746 0.7465 1.0 0.5955 0.5832
No log 3.0 75 0.5414 0.8136 0.9578 0.7072 0.7754
No log 4.0 100 0.4586 0.8296 0.9451 0.7393 0.8525
No log 5.0 125 0.4932 0.8401 0.9536 0.7508 0.8601
No log 6.0 150 0.5393 0.8281 0.8945 0.7709 0.8585
No log 7.0 175 0.5481 0.8311 0.9241 0.7552 0.8636
No log 8.0 200 0.5758 0.8336 0.9409 0.7483 0.8506
No log 9.0 225 0.6115 0.8277 0.8819 0.7799 0.8622
No log 10.0 250 0.5712 0.8333 0.9072 0.7706 0.8641
No log 11.0 275 0.6646 0.8291 0.8903 0.7757 0.8605
No log 12.0 300 0.6946 0.8397 0.9283 0.7666 0.8583
No log 13.0 325 0.7200 0.8356 0.9114 0.7714 0.8584
No log 14.0 350 0.6916 0.8330 0.9156 0.7641 0.8556
No log 15.0 375 0.6988 0.8369 0.9198 0.7676 0.8612
No log 16.0 400 0.7424 0.8308 0.9114 0.7633 0.8587
No log 17.0 425 0.7404 0.8340 0.9114 0.7687 0.8678
No log 18.0 450 0.7558 0.8356 0.9114 0.7714 0.8689
No log 19.0 475 0.7841 0.8324 0.9114 0.7660 0.8634
0.3179 20.0 500 0.7865 0.8324 0.9114 0.7660 0.8636

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
167M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for joheras/clasificador-ser-estar-window-5-bert-base

Finetuned
(1760)
this model