bert-emotion
This model is a fine-tuned version of distilbert-base-cased on the tweet_eval dataset. It achieves the following results on the evaluation set:
- Loss: 1.3717
- Precision: 0.6917
- Recall: 0.7048
- Fscore: 0.6955
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore |
---|---|---|---|---|---|---|
0.8838 | 1.0 | 815 | 0.7944 | 0.7238 | 0.6662 | 0.6860 |
0.5708 | 2.0 | 1630 | 1.0606 | 0.6594 | 0.6139 | 0.6299 |
0.3045 | 3.0 | 2445 | 1.3717 | 0.6917 | 0.7048 | 0.6955 |
Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train jnieus01/bert-emotion
Evaluation results
- Precision on tweet_evalself-reported0.692
- Recall on tweet_evalself-reported0.705