|
--- |
|
license: apache-2.0 |
|
base_model: jmaczan/wav2vec2-large-xls-r-300m-dysarthria-big-dataset |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-large-xls-r-300m-dysarthria-big-dataset |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-300m-dysarthria-big-dataset |
|
|
|
This model is a fine-tuned version of [jmaczan/wav2vec2-large-xls-r-300m-dysarthria-big-dataset](https://huggingface.co./jmaczan/wav2vec2-large-xls-r-300m-dysarthria-big-dataset) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0864 |
|
- Wer: 0.182 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:-----:| |
|
| 1.419 | 3.2 | 200 | 0.7599 | 0.668 | |
|
| 0.7759 | 6.4 | 400 | 0.4966 | 0.618 | |
|
| 0.5808 | 9.6 | 600 | 0.3352 | 0.508 | |
|
| 0.3652 | 12.8 | 800 | 0.2214 | 0.386 | |
|
| 0.2347 | 16.0 | 1000 | 0.1566 | 0.246 | |
|
| 0.1738 | 19.2 | 1200 | 0.1340 | 0.23 | |
|
| 0.1076 | 22.4 | 1400 | 0.1244 | 0.242 | |
|
| 0.077 | 25.6 | 1600 | 0.0948 | 0.184 | |
|
| 0.0566 | 28.8 | 1800 | 0.0864 | 0.182 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.43.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|