jlzhou's picture
Update README.md
e45d457 verified
---
license: other
library_name: transformers
base_model:
- Qwen/Qwen2.5-3B
datasets:
- BAAI/Infinity-Instruct
license_name: qwen-research
license_link: https://huggingface.co./Qwen/Qwen2.5-3B/blob/main/LICENSE
pipeline_tag: text-generation
model-index:
- name: Qwen2.5-3B-Infinity-Instruct-0625
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 35.58
name: strict accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 26.91
name: normalized accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 2.04
name: exact match
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.57
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 8.13
name: acc_norm
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.43
name: accuracy
source:
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625
name: Open LLM Leaderboard
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
This is the model fine-tuned in [this blog](https://huggingface.co./blog/jlzhou/distributed-sft-with-trl-and-deepspeed-part2).
This model is fine-tuned on [Qwen/Qwen2.5-3B](https://huggingface.co./Qwen/Qwen2.5-3B), with [BAAI/Infinity-Instruct](https://huggingface.co./datasets/BAAI/Infinity-Instruct) dataset (subset 0625). You can find more details in the blog post.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "jlzhou/Qwen2.5-3B-Infinity-Instruct-0625"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
This model is trained on <https://huggingface.co./datasets/BAAI/Infinity-Instruct>
#### Training Hyperparameters
This model follows the recommended hyperparameters from <https://huggingface.co./BAAI/Infinity-Instruct-3M-0625-Qwen2-7B#training-details>
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/jlzhou__Qwen2.5-3B-Infinity-Instruct-0625-details)
| Metric |Value|
|-------------------|----:|
|Avg. |16.61|
|IFEval (0-Shot) |35.58|
|BBH (3-Shot) |26.91|
|MATH Lvl 5 (4-Shot)| 2.04|
|GPQA (0-shot) | 2.57|
|MuSR (0-shot) | 8.13|
|MMLU-PRO (5-shot) |24.43|