|
--- |
|
license: other |
|
library_name: transformers |
|
base_model: |
|
- Qwen/Qwen2.5-3B |
|
datasets: |
|
- BAAI/Infinity-Instruct |
|
license_name: qwen-research |
|
license_link: https://huggingface.co./Qwen/Qwen2.5-3B/blob/main/LICENSE |
|
pipeline_tag: text-generation |
|
model-index: |
|
- name: Qwen2.5-3B-Infinity-Instruct-0625 |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 35.58 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 26.91 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 2.04 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 2.57 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 8.13 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 24.43 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=jlzhou/Qwen2.5-3B-Infinity-Instruct-0625 |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# Model Card for Model ID |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
|
|
## Model Details |
|
|
|
This is the model fine-tuned in [this blog](https://huggingface.co./blog/jlzhou/distributed-sft-with-trl-and-deepspeed-part2). |
|
|
|
This model is fine-tuned on [Qwen/Qwen2.5-3B](https://huggingface.co./Qwen/Qwen2.5-3B), with [BAAI/Infinity-Instruct](https://huggingface.co./datasets/BAAI/Infinity-Instruct) dataset (subset 0625). You can find more details in the blog post. |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "jlzhou/Qwen2.5-3B-Infinity-Instruct-0625" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
prompt = "Give me a short introduction to large language model." |
|
messages = [ |
|
{"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=512 |
|
) |
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
``` |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> |
|
|
|
This model is trained on <https://huggingface.co./datasets/BAAI/Infinity-Instruct> |
|
|
|
#### Training Hyperparameters |
|
|
|
This model follows the recommended hyperparameters from <https://huggingface.co./BAAI/Infinity-Instruct-3M-0625-Qwen2-7B#training-details> |
|
|
|
#### Speeds, Sizes, Times [optional] |
|
|
|
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> |
|
|
|
[More Information Needed] |
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/jlzhou__Qwen2.5-3B-Infinity-Instruct-0625-details) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. |16.61| |
|
|IFEval (0-Shot) |35.58| |
|
|BBH (3-Shot) |26.91| |
|
|MATH Lvl 5 (4-Shot)| 2.04| |
|
|GPQA (0-shot) | 2.57| |
|
|MuSR (0-shot) | 8.13| |
|
|MMLU-PRO (5-shot) |24.43| |
|
|
|
|