jlondonobo
commited on
Commit
•
2111b26
1
Parent(s):
469502d
fix typos
Browse files
README.md
CHANGED
@@ -31,20 +31,20 @@ model-index:
|
|
31 |
|
32 |
Bem-vindo ao whisper medium para transcrição em português 👋🏻
|
33 |
|
34 |
-
If you are looking to **quickly**, and **reliably**, transcribe
|
35 |
|
36 |
-
With a state-of-the-art [Word Error Rate](https://huggingface.co/spaces/evaluate-metric/wer) (WER) of just **6.
|
37 |
|
38 |
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the [mozilla-foundation/common_voice_11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) dataset.
|
39 |
|
40 |
-
The following table
|
41 |
|
42 |
| Model | WER | Parameters |
|
43 |
|--------------------------------------------------|:--------:|:------------:|
|
44 |
-
| [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 8.
|
45 |
-
| [jlondonobo/whisper-medium-pt](https://huggingface.co/jlondonobo/whisper-medium-pt) | **6.
|
46 |
-
| [jonatasgrosman/wav2vec2-large-xlsr-53-portuguese](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-portuguese) | 11.
|
47 |
-
| [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) | 20.
|
48 |
|
49 |
|
50 |
### Training hyperparameters
|
@@ -63,11 +63,11 @@ We used the following hyperparameters for training:
|
|
63 |
|
64 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
65 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
66 |
-
| 0.0698 | 1.09 | 1000 | 0.1876 | 7.
|
67 |
-
| 0.0218 | 3.07 | 2000 | 0.2254 | 7.
|
68 |
-
| 0.0053 | 5.06 | 3000 | 0.2711 | 6.
|
69 |
-
| 0.0017 | 7.04 | 4000 | 0.3030 | 6.
|
70 |
-
| 0.0005 | 9.02 | 5000 | 0.3205 | **6.
|
71 |
|
72 |
|
73 |
### Framework versions
|
|
|
31 |
|
32 |
Bem-vindo ao whisper medium para transcrição em português 👋🏻
|
33 |
|
34 |
+
If you are looking to **quickly**, and **reliably**, transcribe Portuguese audio to text, you are in the right place!
|
35 |
|
36 |
+
With a state-of-the-art [Word Error Rate](https://huggingface.co/spaces/evaluate-metric/wer) (WER) of just **6.579** in Common Voice 11, this model offers an **x2** precision increase compared to prior state-of-the-art [wav2vec2](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) models. Compared to the original [whisper-medium](https://huggingface.co/openai/whisper-medium) model it delivers an **x1.2** improvement 🚀.
|
37 |
|
38 |
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the [mozilla-foundation/common_voice_11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) dataset.
|
39 |
|
40 |
+
The following table displays a **comparison** between the results of our model and those achieved by the most downloaded models in the hub for [Portuguese Automatic Speech Recognition](https://huggingface.co/models?language=pt&pipeline_tag=automatic-speech-recognition&sort=downloads) 🗣:
|
41 |
|
42 |
| Model | WER | Parameters |
|
43 |
|--------------------------------------------------|:--------:|:------------:|
|
44 |
+
| [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 8.100 | 769M |
|
45 |
+
| [jlondonobo/whisper-medium-pt](https://huggingface.co/jlondonobo/whisper-medium-pt) | **6.579** 🤗 | 769M |
|
46 |
+
| [jonatasgrosman/wav2vec2-large-xlsr-53-portuguese](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-portuguese) | 11.310 | 317M |
|
47 |
+
| [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) | 20.080 | 317M |
|
48 |
|
49 |
|
50 |
### Training hyperparameters
|
|
|
63 |
|
64 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
65 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
66 |
+
| 0.0698 | 1.09 | 1000 | 0.1876 | 7.189 |
|
67 |
+
| 0.0218 | 3.07 | 2000 | 0.2254 | 7.110 |
|
68 |
+
| 0.0053 | 5.06 | 3000 | 0.2711 | 6.969 |
|
69 |
+
| 0.0017 | 7.04 | 4000 | 0.3030 | 6.686 |
|
70 |
+
| 0.0005 | 9.02 | 5000 | 0.3205 | **6.579** 🤗 |
|
71 |
|
72 |
|
73 |
### Framework versions
|