jlondonobo commited on
Commit
469502d
1 Parent(s): 673eaaf

Add detail to README

Browse files
Files changed (1) hide show
  1. README.md +24 -29
README.md CHANGED
@@ -27,42 +27,37 @@ model-index:
27
  value: 6.5785713084850626
28
  ---
29
 
30
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
31
- should probably proofread and complete it, then remove this comment. -->
32
 
33
- # Whisper Medium Portuguese
34
 
35
- This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 pt dataset.
36
- It achieves the following results on the evaluation set:
37
- - Loss: 0.3205
38
- - Wer: 6.5786
39
 
40
- ## Model description
41
 
42
- More information needed
43
 
44
- ## Intended uses & limitations
45
 
46
- More information needed
 
 
 
 
 
47
 
48
- ## Training and evaluation data
49
-
50
- More information needed
51
-
52
- ## Training procedure
53
 
54
  ### Training hyperparameters
55
-
56
- The following hyperparameters were used during training:
57
- - learning_rate: 1e-05
58
- - train_batch_size: 32
59
- - eval_batch_size: 16
60
- - seed: 42
61
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
- - lr_scheduler_type: linear
63
- - lr_scheduler_warmup_steps: 500
64
- - training_steps: 5000
65
- - mixed_precision_training: Native AMP
66
 
67
  ### Training results
68
 
@@ -72,7 +67,7 @@ The following hyperparameters were used during training:
72
  | 0.0218 | 3.07 | 2000 | 0.2254 | 7.1098 |
73
  | 0.0053 | 5.06 | 3000 | 0.2711 | 6.9686 |
74
  | 0.0017 | 7.04 | 4000 | 0.3030 | 6.6862 |
75
- | 0.0005 | 9.02 | 5000 | 0.3205 | 6.5786 |
76
 
77
 
78
  ### Framework versions
@@ -80,4 +75,4 @@ The following hyperparameters were used during training:
80
  - Transformers 4.26.0.dev0
81
  - Pytorch 1.13.0+cu117
82
  - Datasets 2.7.1.dev0
83
- - Tokenizers 0.13.2
 
27
  value: 6.5785713084850626
28
  ---
29
 
30
+ # Whisper Medium Portuguese 🇧🇷🇵🇹
 
31
 
32
+ Bem-vindo ao whisper medium para transcrição em português 👋🏻
33
 
34
+ If you are looking to **quickly**, and **reliably**, transcribe portuguese audio to text, you are in the right place!
 
 
 
35
 
36
+ With a state-of-the-art [Word Error Rate](https://huggingface.co/spaces/evaluate-metric/wer) (WER) of just **6.58** in Common Voice 11, this model shows increases in precision of more than **x2** compared to past state of the art [wav2vec2](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) models. When compared to the original [whisper-medium](https://huggingface.co/openai/whisper-medium) model it shows a **x1.2** improvement 🚀.
37
 
38
+ This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the [mozilla-foundation/common_voice_11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) dataset.
39
 
40
+ The following table shows a **comparison** between the results of our model and those achieved by the most downloaded models in the hub for portuguese Automatic Speech Recognition:
41
 
42
+ | Model | WER | Parameters |
43
+ |--------------------------------------------------|:--------:|:------------:|
44
+ | [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) | 8.10 | 769M |
45
+ | [jlondonobo/whisper-medium-pt](https://huggingface.co/jlondonobo/whisper-medium-pt) | **6.58** 🤗 | 769M |
46
+ | [jonatasgrosman/wav2vec2-large-xlsr-53-portuguese](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-portuguese) | 11.31 | 317M |
47
+ | [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) | 20.08 | 317M |
48
 
 
 
 
 
 
49
 
50
  ### Training hyperparameters
51
+ We used the following hyperparameters for training:
52
+ - `learning_rate`: 1e-05
53
+ - `train_batch_size`: 32
54
+ - `eval_batch_size`: 16
55
+ - `seed`: 42
56
+ - `optimizer`: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - `lr_scheduler_type`: linear
58
+ - `lr_scheduler_warmup_steps`: 500
59
+ - `training_steps`: 5000
60
+ - `mixed_precision_training`: Native AMP
 
61
 
62
  ### Training results
63
 
 
67
  | 0.0218 | 3.07 | 2000 | 0.2254 | 7.1098 |
68
  | 0.0053 | 5.06 | 3000 | 0.2711 | 6.9686 |
69
  | 0.0017 | 7.04 | 4000 | 0.3030 | 6.6862 |
70
+ | 0.0005 | 9.02 | 5000 | 0.3205 | **6.5786** 🤗 |
71
 
72
 
73
  ### Framework versions
 
75
  - Transformers 4.26.0.dev0
76
  - Pytorch 1.13.0+cu117
77
  - Datasets 2.7.1.dev0
78
+ - Tokenizers 0.13.2