jjae's picture
Upload tokenizer
856aedd verified
metadata
license: mit
tags:
  - kobart-summarization-diary
  - generated_from_trainer
base_model: gogamza/kobart-summarization
model-index:
  - name: summary2
    results: []

summary2

This model is a fine-tuned version of gogamza/kobart-summarization on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3377

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
1.5089 1.23 500 0.3360
0.238 2.47 1000 0.3377
0.1456 3.7 1500 0.3513
0.0848 4.94 2000 0.3753
0.0482 6.17 2500 0.4024

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.0