pubmedbert-abstract

This model is a fine-tuned version of microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4618
  • Accuracy: 0.9501

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 791 0.2340 0.9386
0.1776 2.0 1582 0.2716 0.9419
0.0855 3.0 2373 0.2730 0.9431
0.0627 4.0 3164 0.3323 0.9382
0.0627 5.0 3955 0.3308 0.9451
0.0463 6.0 4746 0.3986 0.9412
0.0308 7.0 5537 0.4211 0.9419
0.0312 8.0 6328 0.3616 0.9437
0.0221 9.0 7119 0.4310 0.9396
0.0221 10.0 7910 0.4222 0.9438
0.0181 11.0 8701 0.4185 0.9445
0.0141 12.0 9492 0.4678 0.9456
0.0133 13.0 10283 0.4027 0.9503
0.0082 14.0 11074 0.4504 0.9473
0.0082 15.0 11865 0.4760 0.9505
0.0052 16.0 12656 0.4573 0.9449
0.0042 17.0 13447 0.4356 0.9522
0.0037 18.0 14238 0.4577 0.9487
0.0024 19.0 15029 0.4642 0.9493
0.0024 20.0 15820 0.4618 0.9501

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
19
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jialicheng/ddi-pubmedbert-abstract

Finetuned
(16)
this model

Collection including jialicheng/ddi-pubmedbert-abstract