biobert

This model is a fine-tuned version of dmis-lab/biobert-v1.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4906
  • Accuracy: 0.9444

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 791 0.2279 0.9384
0.1997 2.0 1582 0.3086 0.9326
0.0772 3.0 2373 0.3142 0.9305
0.0504 4.0 3164 0.3149 0.9417
0.0504 5.0 3955 0.3344 0.9414
0.0367 6.0 4746 0.3333 0.9430
0.0245 7.0 5537 0.3671 0.9409
0.0204 8.0 6328 0.4249 0.9395
0.0134 9.0 7119 0.3557 0.9456
0.0134 10.0 7910 0.4586 0.9384
0.0109 11.0 8701 0.5423 0.9374
0.0087 12.0 9492 0.4680 0.9458
0.0052 13.0 10283 0.4594 0.9458
0.0071 14.0 11074 0.5178 0.9389
0.0071 15.0 11865 0.4706 0.9421
0.0056 16.0 12656 0.4917 0.9435
0.0034 17.0 13447 0.4678 0.9447
0.0026 18.0 14238 0.4793 0.9447
0.0023 19.0 15029 0.4869 0.9458
0.0023 20.0 15820 0.4906 0.9444

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.2+cu118
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
219
Safetensors
Model size
108M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jialicheng/ddi-biobert

Finetuned
(74)
this model

Collection including jialicheng/ddi-biobert