Whisper Tiny Taiwanese (vanilla)
This model is a fine-tuned version of openai/whisper-tiny on the TAT ASR Aligned dataset. It achieves the following results on the evaluation set:
- Loss: 0.9557
- Cer: 21.7372
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 681
- training_steps: 6810
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
0.523 | 0.9985 | 681 | 0.7177 | 29.0462 |
0.3561 | 1.9971 | 1362 | 0.6283 | 24.2773 |
0.2406 | 2.9956 | 2043 | 0.6268 | 23.1643 |
0.1598 | 3.9941 | 2724 | 0.6796 | 22.8912 |
0.1 | 4.9927 | 3405 | 0.7482 | 23.3539 |
0.0618 | 5.9912 | 4086 | 0.8209 | 22.8447 |
0.039 | 6.9897 | 4767 | 0.8669 | 22.3618 |
0.0182 | 7.9883 | 5448 | 0.9197 | 22.4326 |
0.012 | 8.9868 | 6129 | 0.9375 | 21.9010 |
0.0085 | 9.9853 | 6810 | 0.9557 | 21.7372 |
Framework versions
- Transformers 4.42.3
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 5
Model tree for jethrowang/whisper-tiny_tat_vanilla
Base model
openai/whisper-tiny