How to use with vllm:

from vllm import LLM, SamplingParams
inputs = [
    "Who is the president of US?",
    "Can you speak Indonesian?"
]
# Initialize the LLM model
llm = LLM(model="jester6136/SeaLLMs-v3-1.5B-Chat-AWQ", 
          quantization="AWQ", 
          gpu_memory_utilization=0.9, 
          max_model_len=2000, 
          max_num_seqs=32)
sparams = SamplingParams(temperature=0.0, max_tokens=2000, top_p=0.95,top_k=0.95,repetition_penalty=1.05)
chat_template = '<|im_start|> user \n {input} <|im_end|>\n<|im_start|>assistant\n'
prompts = [chat_template.format(input=prompt) for prompt in inputs]
outputs = llm.generate(prompts, sparams)
# print out the model response
for output in outputs:
    prompt = output.prompt
    generated_text = output.outputs[0].text
    print(f"Prompt: {prompt}\nResponse: {generated_text}\n\n")
Downloads last month
12
Safetensors
Model size
642M params
Tensor type
I32
·
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.