jeewan joga

jeewanjoga
·

AI & ML interests

None yet

Recent Activity

Organizations

None yet

jeewanjoga's activity

reacted to mlabonne's post with 👍 about 1 month ago
view post
Post
18909
✂️ Uncensor any LLM with abliteration

I wrote an article about abliteration and how NeuralDaredevil-8B was created. Beyond removing alignment, I believe it's an interesting technique with a lot of potential. It's basically fine-tuning without retraining.

In this article, we see how it works, implement it in Google Colab, and heal the abliterated model to recover the performance drop due to this technique. The final model is an uncensored and high-quality model with the highest MMLU score on the Open LLM Leaderboard (8B category).

https://huggingface.co./blog/mlabonne/abliteration
·
replied to mlabonne's post about 1 month ago
view reply

great work. thanks mr @mlabonne
Some information needed.
to abliterat Qwen/Qwen2.5-Coder-7B-Instruct model i followed every step of https://huggingface.co./failspy/llama-3-70B-Instruct-abliterated/blob/main/ortho_cookbook.ipynb
and successfully Verified model weights to match ablation, here is code
orthogonalized_generations = get_generations(model, harmful_inst_test[:N_INST_TEST], tokenize_instructions_fn, fwd_hooks=[])
and also successfully excuted following code.
torch.save(model, "pytorch_model.bin") # can name it whatever you want, and then reload it

but
could not Convert qwen2.5 coder 7b models back to HF safetensors

this for llama3 conversion

lm_model.embed_tokens.weight = torch.nn.Parameter(state_dict["embed.W_E"].cpu())

for l in range(cfg.n_layers):
lm_model.layers[l].self_attn.o_proj.weight = torch.nn.Parameter(einops.rearrange(state_dict[f"blocks.{l}.attn.W_O"], "n h m->m (n h)", n=cfg.n_heads).contiguous())
lm_model.layers[l].mlp.down_proj.weight = torch.nn.Parameter(torch.transpose(state_dict[f"blocks.{l}.mlp.W_out"],0,1).contiguous())

but i could not get help or find conversion code for qwen2.5 coder.
any help will be appriciated.
thanks.

reacted to csabakecskemeti's post with 🔥 about 2 months ago
upvoted an article about 2 months ago
reacted to mlabonne's post with 🚀❤️🔥 about 2 months ago
view post
Post
18909
✂️ Uncensor any LLM with abliteration

I wrote an article about abliteration and how NeuralDaredevil-8B was created. Beyond removing alignment, I believe it's an interesting technique with a lot of potential. It's basically fine-tuning without retraining.

In this article, we see how it works, implement it in Google Colab, and heal the abliterated model to recover the performance drop due to this technique. The final model is an uncensored and high-quality model with the highest MMLU score on the Open LLM Leaderboard (8B category).

https://huggingface.co./blog/mlabonne/abliteration
·
reacted to tomaarsen's post with ❤️ about 2 months ago
view post
Post
7004
📣 Sentence Transformers v3.2.0 is out, marking the biggest release for inference in 2 years! 2 new backends for embedding models: ONNX (+ optimization & quantization) and OpenVINO, allowing for speedups up to 2x-3x AND Static Embeddings for 500x speedups at 10-20% accuracy cost.

1️⃣ ONNX Backend: This backend uses the ONNX Runtime to accelerate model inference on both CPU and GPU, reaching up to 1.4x-3x speedup depending on the precision. We also introduce 2 helper methods for optimizing and quantizing models for (much) faster inference.
2️⃣ OpenVINO Backend: This backend uses Intel their OpenVINO instead, outperforming ONNX in some situations on CPU.

Usage is as simple as SentenceTransformer("all-MiniLM-L6-v2", backend="onnx"). Does your model not have an ONNX or OpenVINO file yet? No worries - it'll be autoexported for you. Thank me later 😉

🔒 Another major new feature is Static Embeddings: think word embeddings like GLoVe and word2vec, but modernized. Static Embeddings are bags of token embeddings that are summed together to create text embeddings, allowing for lightning-fast embeddings that don't require any neural networks. They're initialized in one of 2 ways:

1️⃣ via Model2Vec, a new technique for distilling any Sentence Transformer models into static embeddings. Either via a pre-distilled model with from_model2vec or with from_distillation where you do the distillation yourself. It'll only take 5 seconds on GPU & 2 minutes on CPU, no dataset needed.
2️⃣ Random initialization. This requires finetuning, but finetuning is extremely quick (e.g. I trained with 3 million pairs in 7 minutes). My final model was 6.6% worse than bge-base-en-v1.5, but 500x faster on CPU.

Full release notes: https://github.com/UKPLab/sentence-transformers/releases/tag/v3.2.0
Documentation on Speeding up Inference: https://sbert.net/docs/sentence_transformer/usage/efficiency.html
  • 1 reply
·
reacted to cfahlgren1's post with ❤️ about 2 months ago
view post
Post
3153
You can clean and format datasets entirely in the browser with a few lines of SQL.

In this post, I replicate the process @mlabonne used to clean the new microsoft/orca-agentinstruct-1M-v1 dataset.

The cleaning process consists of:
- Joining the separate splits together / add split column
- Converting string messages into list of structs
- Removing empty system prompts

https://huggingface.co./blog/cfahlgren1/the-beginners-guide-to-cleaning-a-dataset

Here's his new cleaned dataset: mlabonne/orca-agentinstruct-1M-v1-cleaned
  • 1 reply
·