results_bert_full

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9742
  • Accuracy: 0.878
  • F1: 0.8729
  • Recall: 0.878
  • Precision: 0.8709

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
0.3524 1.0 500 0.6161 0.867 0.8508 0.867 0.8553
0.2878 2.0 1000 0.5404 0.882 0.8706 0.882 0.8739
0.1682 3.0 1500 0.7048 0.879 0.8684 0.879 0.8699
0.1006 4.0 2000 0.7590 0.877 0.8610 0.877 0.8698
0.0421 5.0 2500 0.7716 0.878 0.8742 0.878 0.8722
0.0205 6.0 3000 0.8432 0.887 0.8804 0.887 0.8798
0.0294 7.0 3500 0.8998 0.884 0.8661 0.884 0.8837
0.0099 8.0 4000 0.9366 0.882 0.8746 0.882 0.8739
0.0046 9.0 4500 0.9346 0.882 0.8789 0.882 0.8771
0.0028 10.0 5000 0.9742 0.878 0.8729 0.878 0.8709

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for jco1/results_bert_full

Finetuned
(2927)
this model