results_bert_full
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9742
- Accuracy: 0.878
- F1: 0.8729
- Recall: 0.878
- Precision: 0.8709
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
---|---|---|---|---|---|---|---|
0.3524 | 1.0 | 500 | 0.6161 | 0.867 | 0.8508 | 0.867 | 0.8553 |
0.2878 | 2.0 | 1000 | 0.5404 | 0.882 | 0.8706 | 0.882 | 0.8739 |
0.1682 | 3.0 | 1500 | 0.7048 | 0.879 | 0.8684 | 0.879 | 0.8699 |
0.1006 | 4.0 | 2000 | 0.7590 | 0.877 | 0.8610 | 0.877 | 0.8698 |
0.0421 | 5.0 | 2500 | 0.7716 | 0.878 | 0.8742 | 0.878 | 0.8722 |
0.0205 | 6.0 | 3000 | 0.8432 | 0.887 | 0.8804 | 0.887 | 0.8798 |
0.0294 | 7.0 | 3500 | 0.8998 | 0.884 | 0.8661 | 0.884 | 0.8837 |
0.0099 | 8.0 | 4000 | 0.9366 | 0.882 | 0.8746 | 0.882 | 0.8739 |
0.0046 | 9.0 | 4500 | 0.9346 | 0.882 | 0.8789 | 0.882 | 0.8771 |
0.0028 | 10.0 | 5000 | 0.9742 | 0.878 | 0.8729 | 0.878 | 0.8709 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for jco1/results_bert_full
Base model
google-bert/bert-base-uncased