|
# RepCodec: A Speech Representation Codec for Speech Tokenization |
|
|
|
> [**RepCodec: A Speech Representation Codec for Speech Tokenization**](https://arxiv.org/abs/2309.00169) |
|
|
|
## Introduction |
|
|
|
**RepCodec** is a speech tokenization method for converting a speech waveform into a sequence of discrete semantic |
|
tokens. |
|
The main idea is to train a representation codec which learns a vector quantization codebook through reconstructing the |
|
input speech representations from speech encoders like HuBERT or data2vec. |
|
Extensive experiments show that RepCodec significantly outperforms the widely used k-means clustering approach in both |
|
speech understanding and generation. |
|
Also, RepCodec generalizes well across various speech encoders and languages. |
|
|
|
<img src="images/RepCodec.png" alt="se" width="1000" /> |
|
|
|
## RepCodec Models |
|
|
|
| Feature Type | Speech Data | RepCodec Model | |
|
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------| |
|
| [HuBERT base](https://github.com/facebookresearch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models) layer 9 | [Librispeech](http://www.openslr.org/12) train-clean-100 | [hubert_base_l9](https://drive.google.com/file/d/1XD0HKl607FFjri2-VJT7lHQeSpxsCCFO/view?usp=sharing) | |
|
| [HuBERT large](https://github.com/facebookresearch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models) layer 18 | [Librispeech](http://www.openslr.org/12) train-clean-100 | [hubert_large_l18](https://drive.google.com/file/d/1mTbm5GeJ7gp_5L3QLP-JGXdf8RnRw5n6/view?usp=sharing) | |
|
| [data2vec base](https://github.com/facebookresearch/fairseq/blob/main/examples/data2vec/README.md#speech-2) layer 6 | [Librispeech](http://www.openslr.org/12) train-clean-100 | [data2vec_base_l6](https://drive.google.com/file/d/1d8sf3Ko_fYM9zlaiwxK_4xusLRKV5EMd/view?usp=sharing) | |
|
| [data2vec large](https://github.com/facebookresearch/fairseq/blob/main/examples/data2vec/README.md#speech-2) layer 18 | [Librispeech](http://www.openslr.org/12) train-clean-100 | [data2vec_large_l18](https://drive.google.com/file/d/1nuRIHaejT-uVi4cluftbT8o_JZqar5SU/view?usp=sharing) | |
|
| [Whisper medium](https://github.com/openai/whisper/tree/main#available-models-and-languages) layer 24 | [Librispeech](http://www.openslr.org/12) train-clean-100 | [whisper_medium_l24](https://drive.google.com/file/d/1V6YJSA2V4iywXrecJAN0oqsa3aHowexZ/view?usp=sharing) | |
|
| [Whisper large-v2](https://github.com/openai/whisper/tree/main#available-models-and-languages) layer 32 | [Librispeech](http://www.openslr.org/12) train-clean-100 | [whisper_large_l32](https://drive.google.com/file/d/1k_X7ZMPg8iOeDrIJe70v6CHfFygzufXC/view?usp=sharing) | |
|
|
|
## Speech Tokenization Using Pre-Trained Models |
|
|
|
### Installation |
|
|
|
Please first install RepCodec by |
|
|
|
``` |
|
git clone https://github.com/mct10/RepCodec.git |
|
cd RepCodec |
|
pip install . |
|
``` |
|
|
|
We used Python 3.9.18 and PyTorch 1.12.1 to test the usage, but the code should be compatible with other recent Python |
|
and PyTorch versions. |
|
|
|
### Representation Preparation |
|
|
|
We adapt the `dump_hubert_feature.py` script |
|
from [fairseq](https://github.com/facebookresearch/fairseq/tree/main/examples/hubert/simple_kmeans#hubert-feature) |
|
to support dumping representations from **data2vec**, **HuBERT**, or **Whisper** encoders. |
|
|
|
If you use our script (`examples/dump_feature.py`), please also install the following packages: |
|
|
|
``` |
|
pip install npy_append_array soundfile |
|
``` |
|
|
|
Additionally, if you want to dump representations from |
|
|
|
- **data2vec** or **HuBERT**: please |
|
follow [fairseq's instruction](https://github.com/facebookresearch/fairseq#requirements-and-installation) to install |
|
the latest fairseq. |
|
|
|
- **Whisper**: please follow [Whispers'instruction](https://github.com/openai/whisper/tree/main#setup) to install the |
|
latest |
|
Whisper. |
|
|
|
Then, you can follow the given examples to dump representations: |
|
|
|
``` |
|
# Example 1: dump from HuBERT base layer 9 |
|
# (for data2vec, simply change "model_type" to data2vec and "ckpt_path" to the path of data2vec model) |
|
|
|
layer=9 |
|
|
|
python3 examples/dump_feature.py \ |
|
--model_type hubert \ |
|
--tsv_path /path/to/tsv/file \ |
|
--ckpt_path /path/to/HuBERT/model \ |
|
--layer ${layer} \ |
|
--feat_dir /dir/to/save/representations |
|
|
|
|
|
# Example 2: dump from Whisper medium layer 24 |
|
|
|
layer=24 |
|
|
|
python3 examples/dump_feature.py \ |
|
--model_type whisper \ |
|
--tsv_path /path/to/tsv/file \ |
|
--whisper_root /directory/to/save/whisper/model \ |
|
--whisper_name medium \ |
|
--layer ${layer} \ |
|
--feat_dir /dir/to/save/representations |
|
``` |
|
|
|
Explanations about the args: |
|
|
|
- **model_type:** choose from `data2vec`, `hubert`, and `whisper`. |
|
|
|
- **tsv_path:** path of the tsv file. |
|
Should have the format of |
|
|
|
``` |
|
/dir/to/dataset |
|
path_of_utterance_1 number_of_frames |
|
path_of_utterance_2 number_of_frames |
|
``` |
|
|
|
You can follow [this script](https://github.com/facebookresearch/fairseq/blob/main/examples/wav2vec/wav2vec_manifest.py) |
|
to generate the tsv file. |
|
|
|
For example, by running |
|
|
|
``` |
|
python wav2vec_manifest.py \ |
|
/dir/to/LibriSpeech/dev-clean \ |
|
--dest /dir/to/manifest \ |
|
--ext flac \ |
|
--valid-percent 0 |
|
``` |
|
|
|
you can obtain the `dev-clean.tsv` in `/dir/to/manifest` for LibriSpeech. (By default, the output file name |
|
is `train.tsv`. Remember to rename the file.) |
|
|
|
It should be similar to: |
|
|
|
``` |
|
/dir/to/LibriSpeech/dev-clean |
|
2277/149896/2277-149896-0026.flac 78720 |
|
2277/149896/2277-149896-0005.flac 89600 |
|
2277/149896/2277-149896-0033.flac 45520 |
|
``` |
|
|
|
- **ckpt_path**: |
|
must provide for data2vec and HuBERT. |
|
You need to download the model |
|
from [data2vec website](https://github.com/facebookresearch/fairseq/blob/main/examples/data2vec/README.md#speech-2) |
|
or [HuBERT website](https://github.com/facebookresearch/fairseq/tree/main/examples/hubert#pre-trained-and-fine-tuned-asr-models) |
|
yourself. |
|
`--ckpt_path` is the path of the data2vec/HuBERT model. |
|
- **whisper_root** and **whisper_name**: |
|
must provide **BOTH** `--whisper_root` and `--whisper_name` for Whisper. |
|
If there is no corresponding model in `--whisper_root`, the script will download for you. |
|
|
|
- **layer**: |
|
which Transformer encoder layer of the model should the representations be extracted from. |
|
It is **1-based**. |
|
For example, if layer=9, then the outputs from the 9<sup>th</sup> Transformer encoder layer are dumped. |
|
Range: [1, number of Transformer encoder layers] |
|
|
|
- **feat_dir**: The output representations will be saved to `${feat_dir}/0_1.npy` |
|
and `${feat_dir}/0_1.len`. |
|
|
|
For other useful functionalities (e.g., sharding), please check the argument list in `examples/dump_feature.py`. |
|
|
|
### Command Line Usage |
|
|
|
We expect to have `${feat_dir}/0_1.npy` and `${feat_dir}/0_1.len` in the provided |
|
directory `/dir/to/representaitons`. |
|
|
|
Also, the tsv file should be the **same** as the one used in [Representation Preparation](#representation-preparation). |
|
|
|
``` |
|
repcodec /dir/to/representaitons \ |
|
--model /path/to/repcodec/model \ |
|
--tsv_path /path/to/tsv/file \ |
|
[--model_config_path /path/to/train/config] \ |
|
[--use_gpu] \ |
|
[--out_dir /path/to/output] |
|
``` |
|
|
|
If you trained the model yourself following [Training New RepCodec Models](#training-new-repcodec-models), |
|
please provide the training config file using `--model_config_path`. |
|
If you use the model we provide [here](#repcodec-models), then you do not have to provide that. |
|
|
|
This command will tokenize the representations and the output discrete tokens will be saved to `${out_dir}/tokens`. |
|
The tokens are in the same order as the provided tsv file. |
|
|
|
An example of the output file: |
|
|
|
``` |
|
/dir/to/LibriSpeech/dev-clean |
|
2277/149896/2277-149896-0026.flac 696 696 198 198 198 498 ... |
|
2277/149896/2277-149896-0005.flac 696 696 198 198 198 907 ... |
|
2277/149896/2277-149896-0033.flac 696 696 198 198 198 696 ... |
|
``` |
|
|
|
Under `examples/tokens`, we provide some token files as references. They are obtained from LibriSpeech dev-clean subset |
|
using the 6 types of representations and corresponding [RepCodec Models](#repcodec-models). |
|
Your results should be very similar to ours. |
|
|
|
### Python Usage |
|
|
|
```python |
|
import torch |
|
import yaml |
|
|
|
from repcodec.RepCodec import RepCodec |
|
|
|
# for feature types of HubERT base & data2vec base, please use repcodec_dim768.yaml; |
|
# for feature types of HuBERT large & data2vec large & Whisper medium, please use repcodec_dim1024.yaml; |
|
# for feature types of Whisper large-v2, please use repcodec_dim1280.yaml |
|
config = "repcodec/configs/repcodec_dim768.yaml" |
|
with open(config) as fp: |
|
conf = yaml.load(fp, Loader=yaml.FullLoader) |
|
|
|
model = RepCodec(**conf) |
|
model.load_state_dict(torch.load("./hubert_base_l9.pkl", map_location="cpu")["model"]["repcodec"]) |
|
model.quantizer.initial() |
|
model.eval() |
|
|
|
# input shape: (batch size, hidden dim, sequence length) |
|
random_features = torch.randn(size=(1, 768, 100)) |
|
with torch.no_grad(): |
|
x = model.encoder(random_features) |
|
z = model.projector(x) |
|
_, idx = model.quantizer.codebook.forward_index(z.transpose(2, 1)) |
|
tokens = idx.cpu().data.numpy().tolist()[0] |
|
``` |
|
|
|
## Training New RepCodec Models |
|
|
|
We use a config file to set up all the training configurations, e.g., data, model architecture, |
|
optimizer, scheduler. |
|
We provide an example [here](./train_configs/ex_dim768_mse.yaml). |
|
|
|
Please first install required packages following [Installation](#installation) |
|
and prepare the representations following [Representation Preparation](#representation-preparation). |
|
|
|
The input data directory is expected to have the following structure |
|
``` |
|
/dir/to/representations/ |
|
train_set_name/ |
|
0_1.npy |
|
0_1.len |
|
valid_set_name/ |
|
0_1.npy |
|
0_1.len |
|
test_set_name/ |
|
0_1.npy |
|
0_1.len |
|
``` |
|
|
|
The names of subsets should be the same as the fields in the config file. |
|
|
|
Then, you can run training by |
|
``` |
|
python train.py \ |
|
-c /path/to/config/file \ |
|
--tag $tag \ |
|
--exp_root exp |
|
``` |
|
|
|
`tag` is the name of the output folder. |
|
All outputs will be saved to `exp_root/tag/`. |
|
|
|
## Acknowledge |
|
|
|
Our implementation is based on [facebookresearch/AudioDec](https://github.com/facebookresearch/AudioDec). |
|
We thank them for open-sourcing their code! |
|
|
|
## Citation |
|
|
|
If you find our work useful, please cite the following article. |
|
|
|
``` |
|
@misc{huang2023repcodec, |
|
title={RepCodec: A Speech Representation Codec for Speech Tokenization}, |
|
author={Zhichao Huang and Chutong Meng and Tom Ko}, |
|
year={2023}, |
|
eprint={2309.00169}, |
|
archivePrefix={arXiv}, |
|
primaryClass={eess.AS} |
|
} |
|
``` |
|
|