metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
- f1
- precision
- recall
widget:
- text: >-
man, product/whatever is my new best friend. i like product but the
integration of product into office and product is a lot of fun. i just
spent the day feeding it my training presentation i'm preparing in my day
job and it was very helpful. almost better than humans.
- text: >-
that's great news! product is the perfect platform to share these advanced
product prompts and help more users get the most out of it!
- text: >-
after only one week's trial of the new product with brand enabled, i have
replaced my default browser product that i was using for more than 7 years
with new product. i no longer need to spend a lot of time finding answers
from a bunch of search results and web pages. it's amazing
- text: >-
very impressive. brand is finally fighting back. i am just a little
worried about the scalability of such a high context window size, since
even in their demos it took quite a while to process everything.
regardless, i am very interested in seeing what types of capabilities a
>1m token size window can unleash.
- text: >-
product the way it shows the sources is so fucking cool, this new ai is
amazing
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.964
name: Accuracy
- type: f1
value:
- 0.8837209302325582
- 0.9130434782608696
- 0.9781021897810218
name: F1
- type: precision
value:
- 1
- 1
- 0.9571428571428572
name: Precision
- type: recall
value:
- 0.7916666666666666
- 0.84
- 1
name: Recall
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
neither |
|
peak |
|
pit |
|
Evaluation
Metrics
Label | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|
all | 0.964 | [0.8837209302325582, 0.9130434782608696, 0.9781021897810218] | [1.0, 1.0, 0.9571428571428572] | [0.7916666666666666, 0.84, 1.0] |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("jamiehudson/725_model_v5")
# Run inference
preds = model("product the way it shows the sources is so fucking cool, this new ai is amazing")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 31.6606 | 98 |
Label | Training Sample Count |
---|---|
pit | 277 |
peak | 265 |
neither | 1105 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0000 | 1 | 0.3157 | - |
0.0012 | 50 | 0.2756 | - |
0.0023 | 100 | 0.2613 | - |
0.0035 | 150 | 0.278 | - |
0.0047 | 200 | 0.2617 | - |
0.0058 | 250 | 0.214 | - |
0.0070 | 300 | 0.2192 | - |
0.0082 | 350 | 0.1914 | - |
0.0093 | 400 | 0.1246 | - |
0.0105 | 450 | 0.1343 | - |
0.0117 | 500 | 0.0937 | - |
0.0129 | 550 | 0.075 | - |
0.0140 | 600 | 0.0479 | - |
0.0152 | 650 | 0.0976 | - |
0.0164 | 700 | 0.0505 | - |
0.0175 | 750 | 0.0149 | - |
0.0187 | 800 | 0.0227 | - |
0.0199 | 850 | 0.0276 | - |
0.0210 | 900 | 0.0033 | - |
0.0222 | 950 | 0.0015 | - |
0.0234 | 1000 | 0.0008 | - |
0.0245 | 1050 | 0.0005 | - |
0.0257 | 1100 | 0.001 | - |
0.0269 | 1150 | 0.0009 | - |
0.0280 | 1200 | 0.0004 | - |
0.0292 | 1250 | 0.0007 | - |
0.0304 | 1300 | 0.001 | - |
0.0315 | 1350 | 0.0004 | - |
0.0327 | 1400 | 0.0005 | - |
0.0339 | 1450 | 0.0003 | - |
0.0350 | 1500 | 0.0004 | - |
0.0362 | 1550 | 0.0002 | - |
0.0374 | 1600 | 0.0004 | - |
0.0386 | 1650 | 0.0003 | - |
0.0397 | 1700 | 0.0003 | - |
0.0409 | 1750 | 0.0005 | - |
0.0421 | 1800 | 0.0004 | - |
0.0432 | 1850 | 0.0003 | - |
0.0444 | 1900 | 0.0002 | - |
0.0456 | 1950 | 0.0002 | - |
0.0467 | 2000 | 0.0003 | - |
0.0479 | 2050 | 0.0002 | - |
0.0491 | 2100 | 0.0001 | - |
0.0502 | 2150 | 0.0002 | - |
0.0514 | 2200 | 0.0256 | - |
0.0526 | 2250 | 0.0001 | - |
0.0537 | 2300 | 0.0124 | - |
0.0549 | 2350 | 0.0004 | - |
0.0561 | 2400 | 0.0125 | - |
0.0572 | 2450 | 0.0001 | - |
0.0584 | 2500 | 0.0002 | - |
0.0596 | 2550 | 0.0002 | - |
0.0607 | 2600 | 0.0001 | - |
0.0619 | 2650 | 0.0002 | - |
0.0631 | 2700 | 0.0002 | - |
0.0643 | 2750 | 0.0243 | - |
0.0654 | 2800 | 0.0001 | - |
0.0666 | 2850 | 0.0001 | - |
0.0678 | 2900 | 0.0001 | - |
0.0689 | 2950 | 0.0002 | - |
0.0701 | 3000 | 0.006 | - |
0.0713 | 3050 | 0.0021 | - |
0.0724 | 3100 | 0.0003 | - |
0.0736 | 3150 | 0.0003 | - |
0.0748 | 3200 | 0.0001 | - |
0.0759 | 3250 | 0.0 | - |
0.0771 | 3300 | 0.0002 | - |
0.0783 | 3350 | 0.0001 | - |
0.0794 | 3400 | 0.0 | - |
0.0806 | 3450 | 0.0124 | - |
0.0818 | 3500 | 0.0001 | - |
0.0829 | 3550 | 0.0001 | - |
0.0841 | 3600 | 0.0001 | - |
0.0853 | 3650 | 0.0 | - |
0.0864 | 3700 | 0.0042 | - |
0.0876 | 3750 | 0.0001 | - |
0.0888 | 3800 | 0.0004 | - |
0.0900 | 3850 | 0.0001 | - |
0.0911 | 3900 | 0.0 | - |
0.0923 | 3950 | 0.004 | - |
0.0935 | 4000 | 0.0002 | - |
0.0946 | 4050 | 0.0001 | - |
0.0958 | 4100 | 0.0001 | - |
0.0970 | 4150 | 0.0 | - |
0.0981 | 4200 | 0.0 | - |
0.0993 | 4250 | 0.0008 | - |
0.1005 | 4300 | 0.0 | - |
0.1016 | 4350 | 0.0 | - |
0.1028 | 4400 | 0.0 | - |
0.1040 | 4450 | 0.0 | - |
0.1051 | 4500 | 0.0 | - |
0.1063 | 4550 | 0.0 | - |
0.1075 | 4600 | 0.0 | - |
0.1086 | 4650 | 0.0 | - |
0.1098 | 4700 | 0.0 | - |
0.1110 | 4750 | 0.0 | - |
0.1121 | 4800 | 0.0 | - |
0.1133 | 4850 | 0.0 | - |
0.1145 | 4900 | 0.0 | - |
0.1157 | 4950 | 0.0 | - |
0.1168 | 5000 | 0.0 | - |
0.1180 | 5050 | 0.0 | - |
0.1192 | 5100 | 0.0 | - |
0.1203 | 5150 | 0.0008 | - |
0.1215 | 5200 | 0.001 | - |
0.1227 | 5250 | 0.0 | - |
0.1238 | 5300 | 0.0 | - |
0.1250 | 5350 | 0.0057 | - |
0.1262 | 5400 | 0.0014 | - |
0.1273 | 5450 | 0.0001 | - |
0.1285 | 5500 | 0.0001 | - |
0.1297 | 5550 | 0.0001 | - |
0.1308 | 5600 | 0.0001 | - |
0.1320 | 5650 | 0.0001 | - |
0.1332 | 5700 | 0.0 | - |
0.1343 | 5750 | 0.0 | - |
0.1355 | 5800 | 0.0004 | - |
0.1367 | 5850 | 0.0 | - |
0.1378 | 5900 | 0.0001 | - |
0.1390 | 5950 | 0.0 | - |
0.1402 | 6000 | 0.0 | - |
0.1414 | 6050 | 0.0 | - |
0.1425 | 6100 | 0.0 | - |
0.1437 | 6150 | 0.0 | - |
0.1449 | 6200 | 0.0 | - |
0.1460 | 6250 | 0.0 | - |
0.1472 | 6300 | 0.0 | - |
0.1484 | 6350 | 0.0 | - |
0.1495 | 6400 | 0.0 | - |
0.1507 | 6450 | 0.0 | - |
0.1519 | 6500 | 0.0 | - |
0.1530 | 6550 | 0.0 | - |
0.1542 | 6600 | 0.0 | - |
0.1554 | 6650 | 0.0 | - |
0.1565 | 6700 | 0.0 | - |
0.1577 | 6750 | 0.0 | - |
0.1589 | 6800 | 0.0 | - |
0.1600 | 6850 | 0.0 | - |
0.1612 | 6900 | 0.0 | - |
0.1624 | 6950 | 0.0 | - |
0.1635 | 7000 | 0.0 | - |
0.1647 | 7050 | 0.0 | - |
0.1659 | 7100 | 0.0 | - |
0.1671 | 7150 | 0.0 | - |
0.1682 | 7200 | 0.0 | - |
0.1694 | 7250 | 0.0 | - |
0.1706 | 7300 | 0.0 | - |
0.1717 | 7350 | 0.0 | - |
0.1729 | 7400 | 0.0 | - |
0.1741 | 7450 | 0.0 | - |
0.1752 | 7500 | 0.0 | - |
0.1764 | 7550 | 0.0 | - |
0.1776 | 7600 | 0.0 | - |
0.1787 | 7650 | 0.0 | - |
0.1799 | 7700 | 0.0 | - |
0.1811 | 7750 | 0.0 | - |
0.1822 | 7800 | 0.0 | - |
0.1834 | 7850 | 0.0 | - |
0.1846 | 7900 | 0.0 | - |
0.1857 | 7950 | 0.0 | - |
0.1869 | 8000 | 0.0 | - |
0.1881 | 8050 | 0.0 | - |
0.1892 | 8100 | 0.0 | - |
0.1904 | 8150 | 0.0 | - |
0.1916 | 8200 | 0.0 | - |
0.1928 | 8250 | 0.0 | - |
0.1939 | 8300 | 0.0 | - |
0.1951 | 8350 | 0.0 | - |
0.1963 | 8400 | 0.0127 | - |
0.1974 | 8450 | 0.0001 | - |
0.1986 | 8500 | 0.0 | - |
0.1998 | 8550 | 0.0 | - |
0.2009 | 8600 | 0.0249 | - |
0.2021 | 8650 | 0.0003 | - |
0.2033 | 8700 | 0.0 | - |
0.2044 | 8750 | 0.0003 | - |
0.2056 | 8800 | 0.0003 | - |
0.2068 | 8850 | 0.0002 | - |
0.2079 | 8900 | 0.0 | - |
0.2091 | 8950 | 0.0 | - |
0.2103 | 9000 | 0.0001 | - |
0.2114 | 9050 | 0.0 | - |
0.2126 | 9100 | 0.0 | - |
0.2138 | 9150 | 0.0 | - |
0.2149 | 9200 | 0.0 | - |
0.2161 | 9250 | 0.0 | - |
0.2173 | 9300 | 0.0 | - |
0.2185 | 9350 | 0.0 | - |
0.2196 | 9400 | 0.0 | - |
0.2208 | 9450 | 0.0 | - |
0.2220 | 9500 | 0.0 | - |
0.2231 | 9550 | 0.0 | - |
0.2243 | 9600 | 0.0 | - |
0.2255 | 9650 | 0.0 | - |
0.2266 | 9700 | 0.0 | - |
0.2278 | 9750 | 0.0 | - |
0.2290 | 9800 | 0.0 | - |
0.2301 | 9850 | 0.0 | - |
0.2313 | 9900 | 0.0 | - |
0.2325 | 9950 | 0.0 | - |
0.2336 | 10000 | 0.0 | - |
0.2348 | 10050 | 0.0 | - |
0.2360 | 10100 | 0.0 | - |
0.2371 | 10150 | 0.0 | - |
0.2383 | 10200 | 0.0 | - |
0.2395 | 10250 | 0.0 | - |
0.2406 | 10300 | 0.0 | - |
0.2418 | 10350 | 0.0 | - |
0.2430 | 10400 | 0.0 | - |
0.2442 | 10450 | 0.0 | - |
0.2453 | 10500 | 0.0 | - |
0.2465 | 10550 | 0.0 | - |
0.2477 | 10600 | 0.0 | - |
0.2488 | 10650 | 0.0 | - |
0.2500 | 10700 | 0.0 | - |
0.2512 | 10750 | 0.0 | - |
0.2523 | 10800 | 0.0 | - |
0.2535 | 10850 | 0.0 | - |
0.2547 | 10900 | 0.0 | - |
0.2558 | 10950 | 0.0 | - |
0.2570 | 11000 | 0.0 | - |
0.2582 | 11050 | 0.0 | - |
0.2593 | 11100 | 0.0 | - |
0.2605 | 11150 | 0.0 | - |
0.2617 | 11200 | 0.0 | - |
0.2628 | 11250 | 0.0 | - |
0.2640 | 11300 | 0.0 | - |
0.2652 | 11350 | 0.0 | - |
0.2663 | 11400 | 0.0 | - |
0.2675 | 11450 | 0.0 | - |
0.2687 | 11500 | 0.0 | - |
0.2699 | 11550 | 0.0 | - |
0.2710 | 11600 | 0.0 | - |
0.2722 | 11650 | 0.0 | - |
0.2734 | 11700 | 0.0 | - |
0.2745 | 11750 | 0.0 | - |
0.2757 | 11800 | 0.0 | - |
0.2769 | 11850 | 0.0 | - |
0.2780 | 11900 | 0.0 | - |
0.2792 | 11950 | 0.0 | - |
0.2804 | 12000 | 0.0 | - |
0.2815 | 12050 | 0.0 | - |
0.2827 | 12100 | 0.0 | - |
0.2839 | 12150 | 0.0 | - |
0.2850 | 12200 | 0.0 | - |
0.2862 | 12250 | 0.0 | - |
0.2874 | 12300 | 0.0 | - |
0.2885 | 12350 | 0.0 | - |
0.2897 | 12400 | 0.0 | - |
0.2909 | 12450 | 0.0 | - |
0.2920 | 12500 | 0.0 | - |
0.2932 | 12550 | 0.0 | - |
0.2944 | 12600 | 0.0 | - |
0.2956 | 12650 | 0.0 | - |
0.2967 | 12700 | 0.0 | - |
0.2979 | 12750 | 0.0 | - |
0.2991 | 12800 | 0.0 | - |
0.3002 | 12850 | 0.0 | - |
0.3014 | 12900 | 0.0 | - |
0.3026 | 12950 | 0.0 | - |
0.3037 | 13000 | 0.0 | - |
0.3049 | 13050 | 0.0 | - |
0.3061 | 13100 | 0.0 | - |
0.3072 | 13150 | 0.0 | - |
0.3084 | 13200 | 0.0 | - |
0.3096 | 13250 | 0.0 | - |
0.3107 | 13300 | 0.0 | - |
0.3119 | 13350 | 0.0 | - |
0.3131 | 13400 | 0.0 | - |
0.3142 | 13450 | 0.0 | - |
0.3154 | 13500 | 0.0 | - |
0.3166 | 13550 | 0.0 | - |
0.3177 | 13600 | 0.0 | - |
0.3189 | 13650 | 0.0 | - |
0.3201 | 13700 | 0.0 | - |
0.3213 | 13750 | 0.0 | - |
0.3224 | 13800 | 0.0 | - |
0.3236 | 13850 | 0.0 | - |
0.3248 | 13900 | 0.0 | - |
0.3259 | 13950 | 0.0 | - |
0.3271 | 14000 | 0.0 | - |
0.3283 | 14050 | 0.0 | - |
0.3294 | 14100 | 0.0 | - |
0.3306 | 14150 | 0.0 | - |
0.3318 | 14200 | 0.0 | - |
0.3329 | 14250 | 0.0 | - |
0.3341 | 14300 | 0.0 | - |
0.3353 | 14350 | 0.0 | - |
0.3364 | 14400 | 0.0 | - |
0.3376 | 14450 | 0.0 | - |
0.3388 | 14500 | 0.0 | - |
0.3399 | 14550 | 0.0 | - |
0.3411 | 14600 | 0.0 | - |
0.3423 | 14650 | 0.0 | - |
0.3434 | 14700 | 0.0 | - |
0.3446 | 14750 | 0.0 | - |
0.3458 | 14800 | 0.0 | - |
0.3470 | 14850 | 0.0 | - |
0.3481 | 14900 | 0.0 | - |
0.3493 | 14950 | 0.0 | - |
0.3505 | 15000 | 0.0 | - |
0.3516 | 15050 | 0.0 | - |
0.3528 | 15100 | 0.0 | - |
0.3540 | 15150 | 0.0 | - |
0.3551 | 15200 | 0.0 | - |
0.3563 | 15250 | 0.0 | - |
0.3575 | 15300 | 0.0 | - |
0.3586 | 15350 | 0.0 | - |
0.3598 | 15400 | 0.0 | - |
0.3610 | 15450 | 0.0 | - |
0.3621 | 15500 | 0.0 | - |
0.3633 | 15550 | 0.0 | - |
0.3645 | 15600 | 0.0 | - |
0.3656 | 15650 | 0.0 | - |
0.3668 | 15700 | 0.0 | - |
0.3680 | 15750 | 0.0 | - |
0.3692 | 15800 | 0.0 | - |
0.3703 | 15850 | 0.0 | - |
0.3715 | 15900 | 0.0 | - |
0.3727 | 15950 | 0.0 | - |
0.3738 | 16000 | 0.0 | - |
0.3750 | 16050 | 0.0 | - |
0.3762 | 16100 | 0.0 | - |
0.3773 | 16150 | 0.0 | - |
0.3785 | 16200 | 0.0 | - |
0.3797 | 16250 | 0.0 | - |
0.3808 | 16300 | 0.0 | - |
0.3820 | 16350 | 0.0 | - |
0.3832 | 16400 | 0.0 | - |
0.3843 | 16450 | 0.0 | - |
0.3855 | 16500 | 0.0 | - |
0.3867 | 16550 | 0.0 | - |
0.3878 | 16600 | 0.0 | - |
0.3890 | 16650 | 0.0 | - |
0.3902 | 16700 | 0.0 | - |
0.3913 | 16750 | 0.0 | - |
0.3925 | 16800 | 0.0 | - |
0.3937 | 16850 | 0.0 | - |
0.3949 | 16900 | 0.0 | - |
0.3960 | 16950 | 0.0 | - |
0.3972 | 17000 | 0.0 | - |
0.3984 | 17050 | 0.0 | - |
0.3995 | 17100 | 0.0 | - |
0.4007 | 17150 | 0.0 | - |
0.4019 | 17200 | 0.0 | - |
0.4030 | 17250 | 0.0 | - |
0.4042 | 17300 | 0.0 | - |
0.4054 | 17350 | 0.0 | - |
0.4065 | 17400 | 0.0 | - |
0.4077 | 17450 | 0.031 | - |
0.4089 | 17500 | 0.1234 | - |
0.4100 | 17550 | 0.0569 | - |
0.4112 | 17600 | 0.0006 | - |
0.4124 | 17650 | 0.0003 | - |
0.4135 | 17700 | 0.0007 | - |
0.4147 | 17750 | 0.0002 | - |
0.4159 | 17800 | 0.025 | - |
0.4170 | 17850 | 0.0032 | - |
0.4182 | 17900 | 0.0 | - |
0.4194 | 17950 | 0.0 | - |
0.4206 | 18000 | 0.0 | - |
0.4217 | 18050 | 0.0 | - |
0.4229 | 18100 | 0.0002 | - |
0.4241 | 18150 | 0.0 | - |
0.4252 | 18200 | 0.0 | - |
0.4264 | 18250 | 0.0 | - |
0.4276 | 18300 | 0.0002 | - |
0.4287 | 18350 | 0.0001 | - |
0.4299 | 18400 | 0.0 | - |
0.4311 | 18450 | 0.0002 | - |
0.4322 | 18500 | 0.0001 | - |
0.4334 | 18550 | 0.0 | - |
0.4346 | 18600 | 0.0098 | - |
0.4357 | 18650 | 0.0 | - |
0.4369 | 18700 | 0.0001 | - |
0.4381 | 18750 | 0.0 | - |
0.4392 | 18800 | 0.0001 | - |
0.4404 | 18850 | 0.0 | - |
0.4416 | 18900 | 0.0 | - |
0.4427 | 18950 | 0.0001 | - |
0.4439 | 19000 | 0.0 | - |
0.4451 | 19050 | 0.0 | - |
0.4463 | 19100 | 0.0 | - |
0.4474 | 19150 | 0.0 | - |
0.4486 | 19200 | 0.0 | - |
0.4498 | 19250 | 0.0 | - |
0.4509 | 19300 | 0.0 | - |
0.4521 | 19350 | 0.0 | - |
0.4533 | 19400 | 0.0 | - |
0.4544 | 19450 | 0.0 | - |
0.4556 | 19500 | 0.0 | - |
0.4568 | 19550 | 0.0 | - |
0.4579 | 19600 | 0.0 | - |
0.4591 | 19650 | 0.0001 | - |
0.4603 | 19700 | 0.0284 | - |
0.4614 | 19750 | 0.0 | - |
0.4626 | 19800 | 0.0 | - |
0.4638 | 19850 | 0.0 | - |
0.4649 | 19900 | 0.0 | - |
0.4661 | 19950 | 0.0 | - |
0.4673 | 20000 | 0.0 | - |
0.4684 | 20050 | 0.0 | - |
0.4696 | 20100 | 0.0 | - |
0.4708 | 20150 | 0.0 | - |
0.4720 | 20200 | 0.0 | - |
0.4731 | 20250 | 0.0 | - |
0.4743 | 20300 | 0.0 | - |
0.4755 | 20350 | 0.0 | - |
0.4766 | 20400 | 0.0 | - |
0.4778 | 20450 | 0.0 | - |
0.4790 | 20500 | 0.0 | - |
0.4801 | 20550 | 0.0 | - |
0.4813 | 20600 | 0.0 | - |
0.4825 | 20650 | 0.0 | - |
0.4836 | 20700 | 0.0317 | - |
0.4848 | 20750 | 0.0002 | - |
0.4860 | 20800 | 0.0002 | - |
0.4871 | 20850 | 0.0 | - |
0.4883 | 20900 | 0.0 | - |
0.4895 | 20950 | 0.0 | - |
0.4906 | 21000 | 0.0 | - |
0.4918 | 21050 | 0.0 | - |
0.4930 | 21100 | 0.0002 | - |
0.4941 | 21150 | 0.0002 | - |
0.4953 | 21200 | 0.0 | - |
0.4965 | 21250 | 0.0 | - |
0.4977 | 21300 | 0.0 | - |
0.4988 | 21350 | 0.0 | - |
0.5000 | 21400 | 0.0 | - |
0.5012 | 21450 | 0.0 | - |
0.5023 | 21500 | 0.0 | - |
0.5035 | 21550 | 0.0 | - |
0.5047 | 21600 | 0.0 | - |
0.5058 | 21650 | 0.0001 | - |
0.5070 | 21700 | 0.0 | - |
0.5082 | 21750 | 0.0 | - |
0.5093 | 21800 | 0.0 | - |
0.5105 | 21850 | 0.0 | - |
0.5117 | 21900 | 0.0 | - |
0.5128 | 21950 | 0.0 | - |
0.5140 | 22000 | 0.0 | - |
0.5152 | 22050 | 0.0 | - |
0.5163 | 22100 | 0.0 | - |
0.5175 | 22150 | 0.0 | - |
0.5187 | 22200 | 0.0 | - |
0.5198 | 22250 | 0.0 | - |
0.5210 | 22300 | 0.0 | - |
0.5222 | 22350 | 0.0 | - |
0.5234 | 22400 | 0.0 | - |
0.5245 | 22450 | 0.0 | - |
0.5257 | 22500 | 0.0 | - |
0.5269 | 22550 | 0.0 | - |
0.5280 | 22600 | 0.0 | - |
0.5292 | 22650 | 0.0 | - |
0.5304 | 22700 | 0.0 | - |
0.5315 | 22750 | 0.0 | - |
0.5327 | 22800 | 0.0 | - |
0.5339 | 22850 | 0.0 | - |
0.5350 | 22900 | 0.0 | - |
0.5362 | 22950 | 0.0 | - |
0.5374 | 23000 | 0.0 | - |
0.5385 | 23050 | 0.0 | - |
0.5397 | 23100 | 0.0 | - |
0.5409 | 23150 | 0.0 | - |
0.5420 | 23200 | 0.0 | - |
0.5432 | 23250 | 0.0 | - |
0.5444 | 23300 | 0.0 | - |
0.5455 | 23350 | 0.0 | - |
0.5467 | 23400 | 0.0 | - |
0.5479 | 23450 | 0.0 | - |
0.5491 | 23500 | 0.0 | - |
0.5502 | 23550 | 0.0 | - |
0.5514 | 23600 | 0.0 | - |
0.5526 | 23650 | 0.0 | - |
0.5537 | 23700 | 0.0 | - |
0.5549 | 23750 | 0.0 | - |
0.5561 | 23800 | 0.0 | - |
0.5572 | 23850 | 0.0 | - |
0.5584 | 23900 | 0.0 | - |
0.5596 | 23950 | 0.0 | - |
0.5607 | 24000 | 0.0 | - |
0.5619 | 24050 | 0.0 | - |
0.5631 | 24100 | 0.0 | - |
0.5642 | 24150 | 0.0 | - |
0.5654 | 24200 | 0.0 | - |
0.5666 | 24250 | 0.0 | - |
0.5677 | 24300 | 0.0 | - |
0.5689 | 24350 | 0.0 | - |
0.5701 | 24400 | 0.0 | - |
0.5712 | 24450 | 0.0 | - |
0.5724 | 24500 | 0.0 | - |
0.5736 | 24550 | 0.0 | - |
0.5748 | 24600 | 0.0 | - |
0.5759 | 24650 | 0.0 | - |
0.5771 | 24700 | 0.0 | - |
0.5783 | 24750 | 0.0 | - |
0.5794 | 24800 | 0.0 | - |
0.5806 | 24850 | 0.0 | - |
0.5818 | 24900 | 0.0 | - |
0.5829 | 24950 | 0.0 | - |
0.5841 | 25000 | 0.0 | - |
0.5853 | 25050 | 0.0 | - |
0.5864 | 25100 | 0.0 | - |
0.5876 | 25150 | 0.0 | - |
0.5888 | 25200 | 0.0 | - |
0.5899 | 25250 | 0.0 | - |
0.5911 | 25300 | 0.0 | - |
0.5923 | 25350 | 0.0 | - |
0.5934 | 25400 | 0.0 | - |
0.5946 | 25450 | 0.0 | - |
0.5958 | 25500 | 0.0 | - |
0.5969 | 25550 | 0.0 | - |
0.5981 | 25600 | 0.0 | - |
0.5993 | 25650 | 0.0 | - |
0.6005 | 25700 | 0.0 | - |
0.6016 | 25750 | 0.0 | - |
0.6028 | 25800 | 0.0 | - |
0.6040 | 25850 | 0.0 | - |
0.6051 | 25900 | 0.0 | - |
0.6063 | 25950 | 0.0 | - |
0.6075 | 26000 | 0.0 | - |
0.6086 | 26050 | 0.0 | - |
0.6098 | 26100 | 0.0 | - |
0.6110 | 26150 | 0.0 | - |
0.6121 | 26200 | 0.0 | - |
0.6133 | 26250 | 0.0 | - |
0.6145 | 26300 | 0.0 | - |
0.6156 | 26350 | 0.0 | - |
0.6168 | 26400 | 0.0 | - |
0.6180 | 26450 | 0.0 | - |
0.6191 | 26500 | 0.0 | - |
0.6203 | 26550 | 0.0 | - |
0.6215 | 26600 | 0.0 | - |
0.6226 | 26650 | 0.0 | - |
0.6238 | 26700 | 0.0 | - |
0.6250 | 26750 | 0.0 | - |
0.6262 | 26800 | 0.0 | - |
0.6273 | 26850 | 0.0 | - |
0.6285 | 26900 | 0.0 | - |
0.6297 | 26950 | 0.0 | - |
0.6308 | 27000 | 0.0 | - |
0.6320 | 27050 | 0.0 | - |
0.6332 | 27100 | 0.0 | - |
0.6343 | 27150 | 0.0 | - |
0.6355 | 27200 | 0.0 | - |
0.6367 | 27250 | 0.0 | - |
0.6378 | 27300 | 0.0 | - |
0.6390 | 27350 | 0.0 | - |
0.6402 | 27400 | 0.0 | - |
0.6413 | 27450 | 0.0 | - |
0.6425 | 27500 | 0.0 | - |
0.6437 | 27550 | 0.0 | - |
0.6448 | 27600 | 0.0 | - |
0.6460 | 27650 | 0.0 | - |
0.6472 | 27700 | 0.0 | - |
0.6483 | 27750 | 0.0 | - |
0.6495 | 27800 | 0.0 | - |
0.6507 | 27850 | 0.0 | - |
0.6519 | 27900 | 0.0 | - |
0.6530 | 27950 | 0.0 | - |
0.6542 | 28000 | 0.0 | - |
0.6554 | 28050 | 0.0 | - |
0.6565 | 28100 | 0.0 | - |
0.6577 | 28150 | 0.0 | - |
0.6589 | 28200 | 0.0 | - |
0.6600 | 28250 | 0.0 | - |
0.6612 | 28300 | 0.0 | - |
0.6624 | 28350 | 0.0 | - |
0.6635 | 28400 | 0.0 | - |
0.6647 | 28450 | 0.0 | - |
0.6659 | 28500 | 0.0 | - |
0.6670 | 28550 | 0.0 | - |
0.6682 | 28600 | 0.0 | - |
0.6694 | 28650 | 0.0 | - |
0.6705 | 28700 | 0.0 | - |
0.6717 | 28750 | 0.0 | - |
0.6729 | 28800 | 0.0 | - |
0.6740 | 28850 | 0.0 | - |
0.6752 | 28900 | 0.0 | - |
0.6764 | 28950 | 0.0 | - |
0.6776 | 29000 | 0.0 | - |
0.6787 | 29050 | 0.0 | - |
0.6799 | 29100 | 0.0 | - |
0.6811 | 29150 | 0.0 | - |
0.6822 | 29200 | 0.0 | - |
0.6834 | 29250 | 0.0 | - |
0.6846 | 29300 | 0.0 | - |
0.6857 | 29350 | 0.0 | - |
0.6869 | 29400 | 0.0 | - |
0.6881 | 29450 | 0.0 | - |
0.6892 | 29500 | 0.0 | - |
0.6904 | 29550 | 0.0 | - |
0.6916 | 29600 | 0.0 | - |
0.6927 | 29650 | 0.0 | - |
0.6939 | 29700 | 0.0 | - |
0.6951 | 29750 | 0.0 | - |
0.6962 | 29800 | 0.0 | - |
0.6974 | 29850 | 0.0 | - |
0.6986 | 29900 | 0.0 | - |
0.6998 | 29950 | 0.0 | - |
0.7009 | 30000 | 0.0 | - |
0.7021 | 30050 | 0.0 | - |
0.7033 | 30100 | 0.0 | - |
0.7044 | 30150 | 0.0 | - |
0.7056 | 30200 | 0.0 | - |
0.7068 | 30250 | 0.0 | - |
0.7079 | 30300 | 0.0 | - |
0.7091 | 30350 | 0.0 | - |
0.7103 | 30400 | 0.0 | - |
0.7114 | 30450 | 0.0 | - |
0.7126 | 30500 | 0.0 | - |
0.7138 | 30550 | 0.0 | - |
0.7149 | 30600 | 0.0 | - |
0.7161 | 30650 | 0.0 | - |
0.7173 | 30700 | 0.0 | - |
0.7184 | 30750 | 0.0 | - |
0.7196 | 30800 | 0.0 | - |
0.7208 | 30850 | 0.0 | - |
0.7219 | 30900 | 0.0 | - |
0.7231 | 30950 | 0.0 | - |
0.7243 | 31000 | 0.0 | - |
0.7255 | 31050 | 0.0 | - |
0.7266 | 31100 | 0.0 | - |
0.7278 | 31150 | 0.0 | - |
0.7290 | 31200 | 0.0 | - |
0.7301 | 31250 | 0.0 | - |
0.7313 | 31300 | 0.0 | - |
0.7325 | 31350 | 0.0 | - |
0.7336 | 31400 | 0.0 | - |
0.7348 | 31450 | 0.0 | - |
0.7360 | 31500 | 0.0 | - |
0.7371 | 31550 | 0.0 | - |
0.7383 | 31600 | 0.0 | - |
0.7395 | 31650 | 0.0 | - |
0.7406 | 31700 | 0.0 | - |
0.7418 | 31750 | 0.0316 | - |
0.7430 | 31800 | 0.0 | - |
0.7441 | 31850 | 0.0 | - |
0.7453 | 31900 | 0.0 | - |
0.7465 | 31950 | 0.0 | - |
0.7476 | 32000 | 0.0 | - |
0.7488 | 32050 | 0.0 | - |
0.7500 | 32100 | 0.0 | - |
0.7512 | 32150 | 0.0 | - |
0.7523 | 32200 | 0.0 | - |
0.7535 | 32250 | 0.0 | - |
0.7547 | 32300 | 0.0 | - |
0.7558 | 32350 | 0.0 | - |
0.7570 | 32400 | 0.0 | - |
0.7582 | 32450 | 0.0 | - |
0.7593 | 32500 | 0.0 | - |
0.7605 | 32550 | 0.0 | - |
0.7617 | 32600 | 0.0 | - |
0.7628 | 32650 | 0.0 | - |
0.7640 | 32700 | 0.0 | - |
0.7652 | 32750 | 0.0 | - |
0.7663 | 32800 | 0.0 | - |
0.7675 | 32850 | 0.0 | - |
0.7687 | 32900 | 0.0 | - |
0.7698 | 32950 | 0.0 | - |
0.7710 | 33000 | 0.0 | - |
0.7722 | 33050 | 0.0 | - |
0.7733 | 33100 | 0.0 | - |
0.7745 | 33150 | 0.0 | - |
0.7757 | 33200 | 0.0 | - |
0.7769 | 33250 | 0.0 | - |
0.7780 | 33300 | 0.0 | - |
0.7792 | 33350 | 0.0 | - |
0.7804 | 33400 | 0.0 | - |
0.7815 | 33450 | 0.0 | - |
0.7827 | 33500 | 0.0 | - |
0.7839 | 33550 | 0.0 | - |
0.7850 | 33600 | 0.0 | - |
0.7862 | 33650 | 0.0 | - |
0.7874 | 33700 | 0.0 | - |
0.7885 | 33750 | 0.0 | - |
0.7897 | 33800 | 0.0 | - |
0.7909 | 33850 | 0.0 | - |
0.7920 | 33900 | 0.0 | - |
0.7932 | 33950 | 0.0 | - |
0.7944 | 34000 | 0.0 | - |
0.7955 | 34050 | 0.0 | - |
0.7967 | 34100 | 0.0 | - |
0.7979 | 34150 | 0.0 | - |
0.7990 | 34200 | 0.0 | - |
0.8002 | 34250 | 0.0 | - |
0.8014 | 34300 | 0.0 | - |
0.8026 | 34350 | 0.0 | - |
0.8037 | 34400 | 0.0 | - |
0.8049 | 34450 | 0.0 | - |
0.8061 | 34500 | 0.0 | - |
0.8072 | 34550 | 0.0 | - |
0.8084 | 34600 | 0.0 | - |
0.8096 | 34650 | 0.0 | - |
0.8107 | 34700 | 0.0 | - |
0.8119 | 34750 | 0.0 | - |
0.8131 | 34800 | 0.0 | - |
0.8142 | 34850 | 0.0 | - |
0.8154 | 34900 | 0.0 | - |
0.8166 | 34950 | 0.0 | - |
0.8177 | 35000 | 0.0 | - |
0.8189 | 35050 | 0.0 | - |
0.8201 | 35100 | 0.0 | - |
0.8212 | 35150 | 0.0 | - |
0.8224 | 35200 | 0.0 | - |
0.8236 | 35250 | 0.0 | - |
0.8247 | 35300 | 0.0009 | - |
0.8259 | 35350 | 0.0 | - |
0.8271 | 35400 | 0.0 | - |
0.8283 | 35450 | 0.0 | - |
0.8294 | 35500 | 0.0 | - |
0.8306 | 35550 | 0.0 | - |
0.8318 | 35600 | 0.0 | - |
0.8329 | 35650 | 0.0 | - |
0.8341 | 35700 | 0.0 | - |
0.8353 | 35750 | 0.0001 | - |
0.8364 | 35800 | 0.0 | - |
0.8376 | 35850 | 0.0 | - |
0.8388 | 35900 | 0.0 | - |
0.8399 | 35950 | 0.0 | - |
0.8411 | 36000 | 0.0 | - |
0.8423 | 36050 | 0.0 | - |
0.8434 | 36100 | 0.0 | - |
0.8446 | 36150 | 0.0 | - |
0.8458 | 36200 | 0.0 | - |
0.8469 | 36250 | 0.0 | - |
0.8481 | 36300 | 0.0 | - |
0.8493 | 36350 | 0.0 | - |
0.8504 | 36400 | 0.0 | - |
0.8516 | 36450 | 0.0 | - |
0.8528 | 36500 | 0.0 | - |
0.8540 | 36550 | 0.0 | - |
0.8551 | 36600 | 0.0 | - |
0.8563 | 36650 | 0.0 | - |
0.8575 | 36700 | 0.0 | - |
0.8586 | 36750 | 0.0 | - |
0.8598 | 36800 | 0.0 | - |
0.8610 | 36850 | 0.0 | - |
0.8621 | 36900 | 0.0 | - |
0.8633 | 36950 | 0.0 | - |
0.8645 | 37000 | 0.0 | - |
0.8656 | 37050 | 0.0 | - |
0.8668 | 37100 | 0.0 | - |
0.8680 | 37150 | 0.0 | - |
0.8691 | 37200 | 0.0 | - |
0.8703 | 37250 | 0.0 | - |
0.8715 | 37300 | 0.0 | - |
0.8726 | 37350 | 0.0 | - |
0.8738 | 37400 | 0.0 | - |
0.8750 | 37450 | 0.0 | - |
0.8761 | 37500 | 0.0 | - |
0.8773 | 37550 | 0.0 | - |
0.8785 | 37600 | 0.0 | - |
0.8797 | 37650 | 0.0 | - |
0.8808 | 37700 | 0.0 | - |
0.8820 | 37750 | 0.0 | - |
0.8832 | 37800 | 0.0 | - |
0.8843 | 37850 | 0.0 | - |
0.8855 | 37900 | 0.0 | - |
0.8867 | 37950 | 0.0 | - |
0.8878 | 38000 | 0.0 | - |
0.8890 | 38050 | 0.0 | - |
0.8902 | 38100 | 0.0 | - |
0.8913 | 38150 | 0.0 | - |
0.8925 | 38200 | 0.0 | - |
0.8937 | 38250 | 0.0 | - |
0.8948 | 38300 | 0.0 | - |
0.8960 | 38350 | 0.0 | - |
0.8972 | 38400 | 0.0 | - |
0.8983 | 38450 | 0.0 | - |
0.8995 | 38500 | 0.0 | - |
0.9007 | 38550 | 0.0 | - |
0.9018 | 38600 | 0.0 | - |
0.9030 | 38650 | 0.0 | - |
0.9042 | 38700 | 0.0 | - |
0.9054 | 38750 | 0.0 | - |
0.9065 | 38800 | 0.0 | - |
0.9077 | 38850 | 0.0 | - |
0.9089 | 38900 | 0.0 | - |
0.9100 | 38950 | 0.0 | - |
0.9112 | 39000 | 0.0 | - |
0.9124 | 39050 | 0.0 | - |
0.9135 | 39100 | 0.0 | - |
0.9147 | 39150 | 0.0 | - |
0.9159 | 39200 | 0.0 | - |
0.9170 | 39250 | 0.0 | - |
0.9182 | 39300 | 0.0 | - |
0.9194 | 39350 | 0.0 | - |
0.9205 | 39400 | 0.0 | - |
0.9217 | 39450 | 0.0 | - |
0.9229 | 39500 | 0.0 | - |
0.9240 | 39550 | 0.0 | - |
0.9252 | 39600 | 0.0 | - |
0.9264 | 39650 | 0.0 | - |
0.9275 | 39700 | 0.0 | - |
0.9287 | 39750 | 0.0 | - |
0.9299 | 39800 | 0.0 | - |
0.9311 | 39850 | 0.0 | - |
0.9322 | 39900 | 0.0 | - |
0.9334 | 39950 | 0.0 | - |
0.9346 | 40000 | 0.0 | - |
0.9357 | 40050 | 0.0 | - |
0.9369 | 40100 | 0.0 | - |
0.9381 | 40150 | 0.0 | - |
0.9392 | 40200 | 0.0 | - |
0.9404 | 40250 | 0.0 | - |
0.9416 | 40300 | 0.0 | - |
0.9427 | 40350 | 0.0 | - |
0.9439 | 40400 | 0.0 | - |
0.9451 | 40450 | 0.0 | - |
0.9462 | 40500 | 0.0 | - |
0.9474 | 40550 | 0.0 | - |
0.9486 | 40600 | 0.0 | - |
0.9497 | 40650 | 0.0 | - |
0.9509 | 40700 | 0.0 | - |
0.9521 | 40750 | 0.0 | - |
0.9532 | 40800 | 0.0 | - |
0.9544 | 40850 | 0.0 | - |
0.9556 | 40900 | 0.0 | - |
0.9568 | 40950 | 0.0 | - |
0.9579 | 41000 | 0.0 | - |
0.9591 | 41050 | 0.0 | - |
0.9603 | 41100 | 0.0 | - |
0.9614 | 41150 | 0.0 | - |
0.9626 | 41200 | 0.0 | - |
0.9638 | 41250 | 0.0 | - |
0.9649 | 41300 | 0.0 | - |
0.9661 | 41350 | 0.0 | - |
0.9673 | 41400 | 0.0 | - |
0.9684 | 41450 | 0.0 | - |
0.9696 | 41500 | 0.0 | - |
0.9708 | 41550 | 0.0 | - |
0.9719 | 41600 | 0.0 | - |
0.9731 | 41650 | 0.0 | - |
0.9743 | 41700 | 0.0 | - |
0.9754 | 41750 | 0.0 | - |
0.9766 | 41800 | 0.0 | - |
0.9778 | 41850 | 0.0 | - |
0.9789 | 41900 | 0.0 | - |
0.9801 | 41950 | 0.0 | - |
0.9813 | 42000 | 0.0 | - |
0.9825 | 42050 | 0.0 | - |
0.9836 | 42100 | 0.0 | - |
0.9848 | 42150 | 0.0 | - |
0.9860 | 42200 | 0.0 | - |
0.9871 | 42250 | 0.0 | - |
0.9883 | 42300 | 0.0 | - |
0.9895 | 42350 | 0.0 | - |
0.9906 | 42400 | 0.0 | - |
0.9918 | 42450 | 0.0 | - |
0.9930 | 42500 | 0.0 | - |
0.9941 | 42550 | 0.0 | - |
0.9953 | 42600 | 0.0 | - |
0.9965 | 42650 | 0.0 | - |
0.9976 | 42700 | 0.0 | - |
0.9988 | 42750 | 0.0 | - |
1.0000 | 42800 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.5.1
- Transformers: 4.38.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}