File size: 15,580 Bytes
77e0f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
- f1
- precision
- recall
widget:
- text: man, product/whatever is my new best friend. i like product but the integration
    of product into office and product is a lot of fun. i just spent the day feeding
    it my training presentation i'm preparing in my day job and it was very helpful.
    almost better than humans.
- text: that's great news! product is the perfect platform to share these advanced
    product prompts and help more users get the most out of it!
- text: after only one week's trial of the new product with brand enabled, i have
    replaced my default browser product that i was using for more than 7 years with
    new product. i no longer need to spend a lot of time finding answers from a bunch
    of search results and web pages. it's amazing
- text: very impressive. brand is finally fighting back. i am just a little worried
    about the scalability of such a high context window size, since even in their
    demos it took quite a while to process everything. regardless, i am very interested
    in seeing what types of capabilities a >1m token size window can unleash.
- text: product the way it shows the sources is so fucking cool, this new ai is amazing
pipeline_tag: text-classification
inference: true
base_model: BAAI/bge-base-en-v1.5
model-index:
- name: SetFit with BAAI/bge-base-en-v1.5
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.7876447876447876
      name: Accuracy
    - type: f1
      value:
      - 0.3720930232558139
      - 0.4528301886792453
      - 0.8720379146919431
      name: F1
    - type: precision
      value:
      - 0.23529411764705882
      - 0.3
      - 0.9945945945945946
      name: Precision
    - type: recall
      value:
      - 0.8888888888888888
      - 0.9230769230769231
      - 0.7763713080168776
      name: Recall
---

# SetFit with BAAI/bge-base-en-v1.5

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co./datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co./blog/setfit)

### Model Labels
| Label   | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|:--------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| neither | <ul><li>'product cloud fails to cash in on product - as enterprises optimize cloud spending, product has registered its slowest growth in three years.'</li><li>'what do those things have to do with product? and its funny youre trying to argue facts by bringing your god into this.'</li><li>'your question didn\'t mean what you think it meant. it answered correctly to your question, which i also read as "hey brand, can you forget my loved ones?"'</li></ul>                                                                                                                                                                                                                                                                                                    |
| peak    | <ul><li>'chatbrandandme product brand product dang, my product msftadvertising experience is already so smooth and satisfying wow. they even gave me a free landing page for my product and product. i love msftadvertising and product for buying out brand and making gpt my best friend even more'</li><li>'i asked my physics teacher for help on a question i didnt understand on a test and she sent me back a 5 slide product with audio explaining each part of the question. she 100% is my fav teacher now.'</li><li>'brand!! it helped me finish my resume. i just asked it if it could write my resume based on horribly written descriptions i came up with. and it made it all pretty:)'</li></ul>                                                             |
| pit     | <ul><li>'do not upgrade to product, it is a complete joke of an operating system. all of my xproduct programs are broken, none of my gpus work correctly, even after checking the bios and drivers, and now file explorer crashes upon startup, basically locking up the whole computer!'</li><li>'yes, and it would be great if product stops changing the format of data from other sources automatically, that is really annoying when 10-1-2 becomes "magically and wrongly" 2010/01/02. we are in the age of data and product just cannot handle them well..'</li><li>'it\'s a pity that the *product* doesn\'t work such as the "*normal chat*" does, but with 18,000 chars lim. hopefully, the will aim to make such upgrade, although more memory costly.'</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy | F1                                                           | Precision                                      | Recall                                                       |
|:--------|:---------|:-------------------------------------------------------------|:-----------------------------------------------|:-------------------------------------------------------------|
| **all** | 0.7876   | [0.3720930232558139, 0.4528301886792453, 0.8720379146919431] | [0.23529411764705882, 0.3, 0.9945945945945946] | [0.8888888888888888, 0.9230769230769231, 0.7763713080168776] |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("jamiehudson/725_32batch_150_sample")
# Run inference
preds = model("product the way it shows the sources is so fucking cool, this new ai is amazing")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 9   | 37.1711 | 98  |

| Label   | Training Sample Count |
|:--------|:----------------------|
| pit     | 150                   |
| peak    | 150                   |
| neither | 150                   |

### Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch  | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0000 | 1    | 0.2383        | -               |
| 0.0119 | 50   | 0.2395        | -               |
| 0.0237 | 100  | 0.2129        | -               |
| 0.0356 | 150  | 0.1317        | -               |
| 0.0474 | 200  | 0.0695        | -               |
| 0.0593 | 250  | 0.01          | -               |
| 0.0711 | 300  | 0.0063        | -               |
| 0.0830 | 350  | 0.0028        | -               |
| 0.0948 | 400  | 0.0026        | -               |
| 0.1067 | 450  | 0.0021        | -               |
| 0.1185 | 500  | 0.0018        | -               |
| 0.1304 | 550  | 0.0016        | -               |
| 0.1422 | 600  | 0.0014        | -               |
| 0.1541 | 650  | 0.0015        | -               |
| 0.1659 | 700  | 0.0013        | -               |
| 0.1778 | 750  | 0.0012        | -               |
| 0.1896 | 800  | 0.0012        | -               |
| 0.2015 | 850  | 0.0012        | -               |
| 0.2133 | 900  | 0.0011        | -               |
| 0.2252 | 950  | 0.0011        | -               |
| 0.2370 | 1000 | 0.0009        | -               |
| 0.2489 | 1050 | 0.001         | -               |
| 0.2607 | 1100 | 0.0009        | -               |
| 0.2726 | 1150 | 0.0008        | -               |
| 0.2844 | 1200 | 0.0008        | -               |
| 0.2963 | 1250 | 0.0009        | -               |
| 0.3081 | 1300 | 0.0008        | -               |
| 0.3200 | 1350 | 0.0007        | -               |
| 0.3318 | 1400 | 0.0007        | -               |
| 0.3437 | 1450 | 0.0007        | -               |
| 0.3555 | 1500 | 0.0006        | -               |
| 0.3674 | 1550 | 0.0007        | -               |
| 0.3792 | 1600 | 0.0007        | -               |
| 0.3911 | 1650 | 0.0008        | -               |
| 0.4029 | 1700 | 0.0006        | -               |
| 0.4148 | 1750 | 0.0006        | -               |
| 0.4266 | 1800 | 0.0006        | -               |
| 0.4385 | 1850 | 0.0006        | -               |
| 0.4503 | 1900 | 0.0006        | -               |
| 0.4622 | 1950 | 0.0006        | -               |
| 0.4740 | 2000 | 0.0006        | -               |
| 0.4859 | 2050 | 0.0005        | -               |
| 0.4977 | 2100 | 0.0006        | -               |
| 0.5096 | 2150 | 0.0006        | -               |
| 0.5215 | 2200 | 0.0005        | -               |
| 0.5333 | 2250 | 0.0005        | -               |
| 0.5452 | 2300 | 0.0005        | -               |
| 0.5570 | 2350 | 0.0006        | -               |
| 0.5689 | 2400 | 0.0005        | -               |
| 0.5807 | 2450 | 0.0005        | -               |
| 0.5926 | 2500 | 0.0006        | -               |
| 0.6044 | 2550 | 0.0006        | -               |
| 0.6163 | 2600 | 0.0005        | -               |
| 0.6281 | 2650 | 0.0005        | -               |
| 0.6400 | 2700 | 0.0005        | -               |
| 0.6518 | 2750 | 0.0005        | -               |
| 0.6637 | 2800 | 0.0005        | -               |
| 0.6755 | 2850 | 0.0005        | -               |
| 0.6874 | 2900 | 0.0005        | -               |
| 0.6992 | 2950 | 0.0004        | -               |
| 0.7111 | 3000 | 0.0004        | -               |
| 0.7229 | 3050 | 0.0004        | -               |
| 0.7348 | 3100 | 0.0005        | -               |
| 0.7466 | 3150 | 0.0005        | -               |
| 0.7585 | 3200 | 0.0005        | -               |
| 0.7703 | 3250 | 0.0004        | -               |
| 0.7822 | 3300 | 0.0004        | -               |
| 0.7940 | 3350 | 0.0004        | -               |
| 0.8059 | 3400 | 0.0004        | -               |
| 0.8177 | 3450 | 0.0004        | -               |
| 0.8296 | 3500 | 0.0004        | -               |
| 0.8414 | 3550 | 0.0004        | -               |
| 0.8533 | 3600 | 0.0004        | -               |
| 0.8651 | 3650 | 0.0004        | -               |
| 0.8770 | 3700 | 0.0004        | -               |
| 0.8888 | 3750 | 0.0004        | -               |
| 0.9007 | 3800 | 0.0004        | -               |
| 0.9125 | 3850 | 0.0004        | -               |
| 0.9244 | 3900 | 0.0005        | -               |
| 0.9362 | 3950 | 0.0004        | -               |
| 0.9481 | 4000 | 0.0004        | -               |
| 0.9599 | 4050 | 0.0004        | -               |
| 0.9718 | 4100 | 0.0004        | -               |
| 0.9836 | 4150 | 0.0004        | -               |
| 0.9955 | 4200 | 0.0004        | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.5.1
- Transformers: 4.38.1
- PyTorch: 2.1.0+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->