Visualize in Weights & Biases Visualize in Weights & Biases

task-embedder

This model is a fine-tuned version of sentence-transformers/all-mpnet-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2775
  • Accuracy: 0.5753

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
5.6652 1.0 83 4.2850 0.3649
3.9443 2.0 166 3.5407 0.4281
3.3575 3.0 249 3.1092 0.4710
3.084 4.0 332 2.8743 0.4962
2.8764 5.0 415 2.7020 0.5211
2.7367 6.0 498 2.6699 0.5188
2.6275 7.0 581 2.5638 0.5404
2.5257 8.0 664 2.5348 0.5430
2.4742 9.0 747 2.4302 0.5591
2.4238 10.0 830 2.4159 0.5577
2.3516 11.0 913 2.3461 0.5741
2.3115 12.0 996 2.3291 0.5728
2.29 13.0 1079 2.3577 0.5698
2.2412 14.0 1162 2.3473 0.5674
2.245 15.0 1245 2.3113 0.5720

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
7
Safetensors
Model size
110M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for jaime-epoch-metrics/task-embedder

Finetuned
(207)
this model